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@] Background and Motivation

* Crowdsourcing 1s preferable for obtaining high-quality annotations for large-
scale datasets.

* Worker Selection is important in Crowdsourcing.

* How to design an allocation scheme to select high-performance crowd workers

remains a challenge.
Aalad
Crowdsourced tasks :> && &&
-

)
s




LTIU] Background and Motivation

* The answering history of workers (prior domain knowledge) can help select
high-quality workers when annotating a new domain (target domain task).
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LTI[J] Background and Motivation

* However, there are two challenges:

* Difficulty in accurately estimating the correlation between domains with a
limited budget.

* Difficulty in estimating the workers’ dynamic knowledge change during the
question-answering worker training process.
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@] Definitions

* Cross-domain-aware worker selection with training:

 Given target domain tasks T = {T}, T,, }, the total budget B, and worker pool W
with each worker w;’s historical profile h;.

* Cross-domain-aware worker selection with training problem 1s to 1) assign no
more than B tasks to |[W| workers for training and 2) select top k workers
with the highest possible annotation accuracy on working tasks T,,.
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@] Methodology
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@] Methodology
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@I’]j Methodology — Worker Training

* Worker training is treated as an “Answer and learn” process for workers.
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LTIU] Methodology
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LTIU] Methodology — Worker Quality Estimation

* We consider two factors in estimating workers' quality:

e Cross-domain correlation — Cross-domain-aware Performance Estimation
(CPE)

* Worker learning gain — Learning Gain Estimation (LGE)




LTIU] Methodology - CPE

* Model the correlation between workers” prior knowledge and the target
domain knowledge as a multivariate normal distribution.

* Record the correct and wrong number of learning tasks for each worker.
« Update the distribution with maximum likelihood estimation.
* Predict the annotation accuracy of each worker.
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LTIU] Methodology - CPE

e Maximum likelihood estimation:

ji = pur + Z1x 0y p(hi — p1~p),
i - lel - EIXDZBIXDZDXh

and U — (hi,T*ﬁéTighi,T*ﬁ).

« Updated annotation accuracy:
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@] Methodology - LGE

Adapt the Item Response | |
Theory (RT) model to () e
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LTIU] Methodology - LGE

e [RT score:
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« Update the learning parameter «;:
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@] Methodology
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@] Methodology — Worker Selection

* Adapt the ME algorithm to select the top half of the workers in the
current round.

* Error bound: O( n?f(ln Si).
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UJ Experiments

Datasets:

TABLE 11
DATASET STATISTICS

Datasets W] Q k  total # of batches B
RW-1 27 10 7 3 540
RW-2 35 10 9 3 700

S-1 40 20 5 7 2400
S-2 50 20 5 7 3000
S-3 80 20 5 15 6400
S-4 160 20 5 31 16000
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UJ Experiments

* Metric: averaged annotation accuracy of the selected top-k workers on the target
domain working task.
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UJ Experiments

» Baselines: We considered three baselines, Universal Sampling (US), Medium
Elimination (ME), and Li et al.

* US: use the budget for all the workers equally and select the top k workers

* ME: allocates the budget in rounds and eliminates the workers by half in each
round based on the accuracy of the learning tasks

* L1 et al.: compute the correlation between the prior domain historical results
with the target domain performance




UJ Experiments

TABLE V

EXPERIMENT RESULTS

RW-1

RW-2

S-1

S-2

S-3

S4

US [11], [19]
ME [11], [19]
Li et al. [31]

0.764 (4.5% 1)
0.771 (3.5% 1)
0.771 (3.5% 1)

0.956 (0.5% 1)
0.944 (1.8% 1)
0.936 (2.7% 1)

0.765 (8.5% T)
0.720 (15.3% 1)
0.780 (6.4% 1)

0.775 (6.8% 1)
0.785 (5.5% 1)
0.805 (2.9% 1)

0815 43% 1
0.795 (6.9% 1)
0.845 (0.6% 1)

0.865 (2.4% T)
0.880 (0.7% 1)
0.870 (1.8% 1)

Ours

0.798

0.961

0.830

0.828

0.850

0.886

Ground Truth

0.914

1.000

0.885

0.875

0.915

0.975




UJ Experiments

* Stability over the parameter k (number of desired workers)
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U0 Experiments

* Stability over the parameter Q (number of learning tasks per batch)
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UJ Summary

* We incorporate the information and propose a novel

worker selection with training algorithm to find high-quality workers.

* We comprehensively consider the of workers during the learning task worker
training process over the new domain to get a better estimate of the In worker
quality.

* We collect for the crowdsourcing research

community to study the problem of cross-domain worker selection with training.

* We conduct on real-world and synthesized datasets to evaluate the

performance of our proposed method comprehensively.
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