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Background and Motivation 

• Crowdsourcing is preferable for obtaining high-quality annotations for large-

scale datasets.

• Worker Selection is important in Crowdsourcing.

• How to design an allocation scheme to select high-performance crowd workers 

remains a challenge.

Crowdsourced tasks
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Background and Motivation 

• The answering history of workers (prior domain knowledge) can help select 

high-quality workers when annotating a new domain (target domain task).
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Background and Motivation 

• However, there are two challenges:

• Difficulty in accurately estimating the correlation between domains with a

limited budget.

• Difficulty in estimating the workers’ dynamic knowledge change during the

question-answering worker training process.

??
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Definitions

• Cross-domain-aware worker selection with training:

• Given target domain tasks 𝑇 = 𝑇𝑙 , 𝑇𝑤 , the total budget B, and worker pool W 

with each worker 𝑤𝑖’s historical profile ℎ𝑖. 

• Cross-domain-aware worker selection with training problem is to 1) assign no 

more than B tasks to |W| workers for training and 2) select top k workers 

with the highest possible annotation accuracy on working tasks 𝑇𝑤.
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Methodology
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Methodology – Worker Training

• Worker training is treated as an “Answer and learn” process for workers.
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Methodology
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Methodology – Worker Quality Estimation

• We consider two factors in estimating workers' quality:

• Cross-domain correlation – Cross-domain-aware Performance Estimation
(CPE)

• Worker learning gain – Learning Gain Estimation (LGE)
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Methodology - CPE

• Model the correlation between workers’ prior knowledge and the target
domain knowledge as amultivariate normal distribution.

• Record the correct and wrong number of learning tasks for each worker.

• Update the distribution withmaximum likelihood estimation.

• Predict the annotation accuracy of each worker.

Multi-variate normal distribution for cross-domain

knowledge modelling

Prior domain and learning

tasks results for each worker

Predicted annotation

accuracy for each worker
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Methodology - CPE

• Maximum likelihood estimation:

• Updated annotation accuracy:
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Methodology - LGE

• Adapt the Item Response
Theory (IRT) model to
estimate the learning gain.
• Compute the IRT scores on the
prior domains.

• Compute the IRT scores on the
target domain learning tasks.

• Update the learning parameter
α𝑖 for each worker based on
the CPE scores and answering
history.

• Predict the estimated scores
in the current round.

IRT model 1

IRT model n

......

Predicted annotation accuracy

for each worker from CPE

Predicted annotation accuracy

for each worker from LGE
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Methodology - LGE

• IRT score:

• Update the learning parameter α𝑖:
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Methodology
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Methodology – Worker Selection

• Adapt the ME algorithm to select the top half of the workers in the
current round.

• Error bound: 𝑂(
𝑛𝑘

𝐵
ln

1

δ𝑐
).
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Experiments

• Datasets:
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Experiments

• Metric: averaged annotation accuracy of the selected top-k workers on the target

domain working task.

Method 1

Method 2

Method 3

Working Tasks

Prior Domains and Learning Tasks

Evaluate
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Experiments

• Baselines: We considered three baselines, Universal Sampling (US), Medium

Elimination (ME), and Li et al.

• US: use the budget for all the workers equally and select the top k workers

• ME: allocates the budget in rounds and eliminates the workers by half in each

round based on the accuracy of the learning tasks

• Li et al.: compute the correlation between the prior domain historical results

with the target domain performance
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Experiments
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Experiments

• Stability over the parameter k (number of desired workers)
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Experiments

• Stability over the parameter Q (number of learning tasks per batch)



Outline

• Background and Motivation

• Definitions

• Methodology

• Experiments 

• Summary



Summary

• We incorporate the cross-domain knowledge information and propose a novel Median 

Elimination-based worker selection with training algorithm to find high-quality workers.

• We comprehensively consider the learning gain of workers during the learning task worker 

training process over the new domain to get a better estimate of the dynamic change in worker 

quality.

• We collect two novel cross-domain worker selection datasets for the crowdsourcing research 

community to study the problem of cross-domain worker selection with training.

• We conduct extensive experiments on real-world and synthesized datasets to evaluate the 

performance of our proposed method comprehensively.
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Thank you
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