Cross-domain-aware Worker Selection with Training for Crowdsourced Annotation

Yushi Sun¹, Jiachuan Wang¹, Peng Cheng², Libin Zheng³, Lei Chen^{1,4}, Jian Yin³

¹The Hong Kong University of Science and Technology, Hong Kong SAR, China ²East China Normal University, Shanghai, China ³Sun Yat-sen University, Guangzhou, China

⁴The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

East China Normal University

Background and Motivation

• Definitions

- Methodology
- Experiments
- Summary

- Crowdsourcing is preferable for obtaining high-quality annotations for large-scale datasets.
- Worker Selection is important in Crowdsourcing.
- How to design an allocation scheme to select high-performance crowd workers remains a challenge.

• The **answering history of workers** (prior domain knowledge) can help select high-quality workers when **annotating a new domain** (target domain task).

- However, there are two challenges:
 - Difficulty in accurately estimating the **correlation between domains** with a limited budget.
 - Difficulty in estimating the **workers' dynamic knowledge change** during the question-answering worker training process.

• Background and Motivation

• Definitions

- Methodology
- Experiments
- Summary

- Cross-domain-aware worker selection with training:
 - Given target domain tasks $T = \{T_l, T_w\}$, the total budget B, and worker pool W with each worker w_i 's historical profile h_i .
 - Cross-domain-aware worker selection with training problem is to 1) assign no more than B tasks to |W| workers for training and 2) select top k workers with the highest possible annotation accuracy on working tasks T_w .

- Background and Motivation
- Definitions

- Methodology
- Experiments
- Summary

• Worker training is treated as an **"Answer and learn"** process for workers.

Are they petunias?

O Yes

No

× No

Methodology – Worker Quality Estimation

- We consider two factors in estimating workers' quality:
- Cross-domain correlation Cross-domain-aware Performance Estimation (CPE)
- Worker learning gain Learning Gain Estimation (LGE)

- Model the **correlation** between workers' **prior knowledge and the target domain** knowledge as a **multivariate normal distribution**.
- Record the correct and wrong number of learning tasks for each worker.
- Update the distribution with maximum likelihood estimation.
- **Predict the annotation accuracy** of each worker.

• Maximum likelihood estimation:

 $\bar{\mu} = \mu_T + \Sigma_{1 \times D} \Sigma_{D \times D}^{-1} (h_i - \mu_{1 \sim D}),$ $\bar{\Sigma} = \Sigma_{1 \times 1} - \Sigma_{1 \times D} \Sigma_{D \times D}^{-1} \Sigma_{D \times 1},$

and
$$\Psi = \frac{(h_{i,T} - \bar{\mu})^{\mathsf{T}} (h_{i,T} - \bar{\mu})}{2\bar{\Sigma}}.$$

• Updated annotation accuracy:

$$\begin{split} \log L &= \sum_{i=1}^{|W_c|} \log P(h_{i,T}|h_i) \\ &= \sum_{i=1}^{|W_c|} \log \int_0^1 h_{i,T}^{C_{i,c}} (1 - h_{i,T})^{X_{i,c}} \frac{e^{-\Psi}}{\sqrt{2\pi |\bar{\Sigma}|}} \mathrm{d}h_{i,T} \\ &= \sum_{i=1}^{|W_c|} \left[\log \int_0^1 h_{i,T}^{C_{i,c}} (1 - h_{i,T})^{X_{i,c}} e^{-\Psi} \mathrm{d}h_{i,T} \\ &+ \log \frac{1}{\sqrt{2\pi}} - \frac{1}{2} \log |\bar{\Sigma}| \right], \end{split}$$

$$p_{c,i} &= E[h_{i,T}|h_i] \\ &= \int_0^1 h_{i,T} P(h_{i,T}|h_i) \mathrm{d}h_{i,T} \\ &= \int_0^1 h_{i,T} \frac{P(h_i, h_{i,T})}{P(h_i)} \mathrm{d}h_{i,T}, \end{split}$$

- Adapt the Item Response Theory (IRT) model to estimate the learning gain.
 - Compute the IRT scores on the **prior domains**.
 - Compute the IRT scores on the target domain learning tasks.
 - Update the learning parameter α_i for each worker based on the CPE scores and answering history.
- Predict the estimated scores in the current round.

• IRT score:

$$\hat{p}_{j,i,d} = g(\alpha_i, \beta_d, K_j)$$
$$= \frac{1}{1 + e^{-(\alpha_i \ln(K_j + 1) - \beta_d)}}.$$

• Update the learning parameter *α_i*:

$$\alpha_{i} = \arg\min_{\alpha_{i}} \left[\sum_{d=1}^{D} (\hat{p}_{1,i,d} - h_{i,d})^{2} + \sum_{j=1}^{c} (\hat{p}_{j-1,i,t} - p_{j,i})^{2} \right]$$

• Adapt the ME algorithm to select the **top half of the workers** in the current round.

• Error bound:
$$O(\sqrt{\frac{nk}{B}\ln\frac{1}{\delta_c}}).$$

• Background and Motivation

• Definitions

- Methodology
- Experiments
- Summary

• Datasets:

TABLE II									
DATASET STATISTICS									
Datasets	$ \mathbf{W} $	Q	k	total # of batches	В				
RW-1	27	10	7	3	540				
RW-2	35	10	9	3	700				
S-1	40	20	5	7	2400				
S-2	50	20	5	7	3000				
S- 3	80	20	5	15	6400				
S-4	160	20	5	31	16000				

• Metric: averaged annotation accuracy of the selected top-k workers on the target domain working task.

- Baselines: We considered three baselines, Universal Sampling (US), Medium Elimination (ME), and Li et al.
 - US: use the budget for all the workers equally and select the top k workers
 - ME: allocates the budget in rounds and eliminates the workers by half in each round based on the accuracy of the learning tasks
 - Li et al.: compute the correlation between the prior domain historical results with the target domain performance

TABLE V							
EXPERIMENT RESULTS							

	RW-1	RW-2	S-1	S-2	S-3	S-4
US [11], [19]	0.764 (4.5% ↑)	0.956 (0.5% 个)	0.765 (8.5% ↑)	0.775 (6.8% ↑)	0.815 (4.3% ↑)	0.865 (2.4% ↑)
ME [11], [19]	0.771 (3.5% 个)	0.944 (1.8% ↑)	0.720 (15.3% ↑)	0.785 (5.5% 个)	0.795 (6.9% ↑)	0.880 (0.7% ↑)
Li et al. [31]	0.771 (3.5% 个)	0.936 (2.7% ↑)	0.780 (6.4% 个)	0.805 (2.9% ↑)	0.845 (0.6% 1)	0.870 (1.8% ↑)
Ours	0.798	0.961	0.830	0.828	0.850	0.886
Ground Truth	0.914	1.000	0.885	0.875	0.915	0.975

• Stability over the parameter k (number of desired workers)

• Stability over the parameter Q (number of learning tasks per batch)

• Background and Motivation

• Definitions

- Methodology
- Experiments
- Summary

- We incorporate the **cross-domain knowledge** information and propose a novel **Median Elimination-based** worker selection with training algorithm to find high-quality workers.
- We comprehensively consider the learning gain of workers during the learning task worker training process over the new domain to get a better estimate of the dynamic change in worker quality.
- We collect **two novel cross-domain worker selection datasets** for the crowdsourcing research community to study the problem of cross-domain worker selection with training.
- We conduct **extensive experiments** on real-world and synthesized datasets to evaluate the performance of our proposed method comprehensively.

Thank you

