When Data Quality Meets Language Models: Past, Status-quo, and Future.

Yushi Sun

Last updated 22/09/2024

About me 🕲

- Yushi Sun (Steve)
- 4th and final year PhD student at HKUST.
- Supervised by Prof. Lei Chen.
- Research interest in data quality (data labeling and preparation), LLMs, and RAG.
- Fortunate to collaborate with experts in these fields: Prof. Nan Tang and Dr. Xin Luna Dong.

Outline

- Background
- LM4DQ
 - Past: Crowd-sourced / Human-in-the-loop
 - Status-quo: Pre-train+fine-tune LMs
 - Status-quo: Low-resource LMs
 - Future: Zero-shot LMs
- Future Vision and Opportunities
 - Preliminary study on DQ4LM
 - LM4DQ and DQ4LM

Background: DQ and LM

- Data quality defines fitness for the use of data [1]:
 - AccuracyCompleteness

High-quality and efficient data labeling / preparation

- Consistency
- Timeliness
- ...
- Language Models:
 - A language model is a probabilistic model of a natural language.
 - LMs predict or generate natural language text by capturing text patterns.
 - Good at processing textual data.

Outline

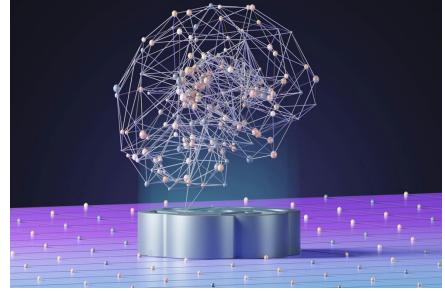
- Background
- LM4DQ
 - Past: Crowd-sourced / Human-in-the-loop
 - Status-quo: Pre-train+fine-tune LMs
 - Status-quo: Low-resource LMs
 - Future: Zero-shot LMs
- Future Vision and Opportunities
 - Preliminary study on DQ4LM
 - LM4DQ and DQ4LM

LMs-powered Data Quality

Data Quality (focus on data labeling)

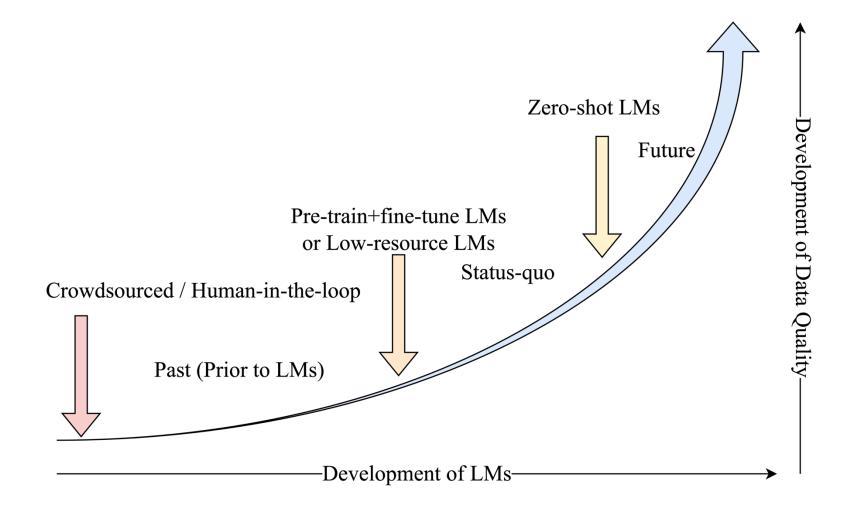
LM4DQ

Reduced labeling cost Improved data labeling performance



Language Models (BERT, GPT, Llama, ...)

Data Quality: Past, Status-quo, and Future

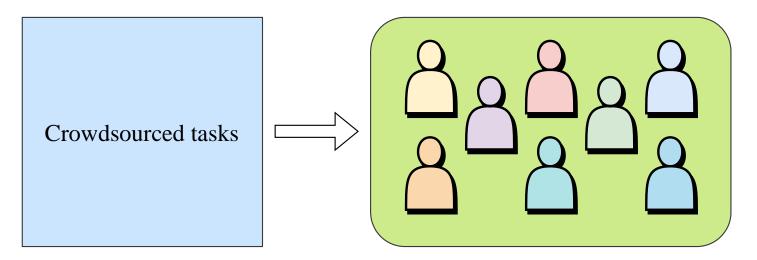


Outline

- Background
- LM4DQ
 - Past: Crowd-sourced / Human-in-the-loop
 - Status-quo: Pre-train+fine-tune LMs
 - Status-quo: Low-resource LMs
 - Future: Zero-shot LMs
- Future Vision and Opportunities
 - Preliminary study on DQ4LM
 - LM4DQ and DQ4LM

Crowd-sourced / Human-in-the-loop - overview

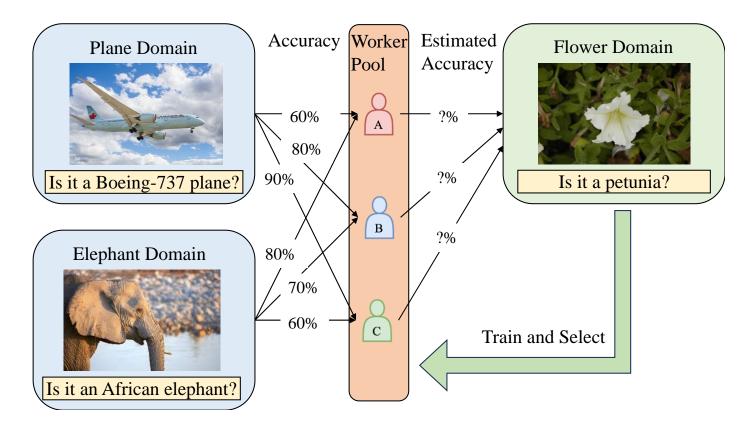
- Cross-domain-aware Worker Selection with Training for Crowdsourced Annotation (ICDE 2024)
 - Crowdsourcing is preferable for obtaining high-quality data labeling for large-scale datasets.
 - Worker Selection is important in Crowdsourcing.
 - How to design an allocation scheme for golden questions (questions with ground truth answers that are used for worker training/selection) to select high-performance crowd workers for the incoming crowdsourced tasks remains a challenge.



9/23/2024[2] Y. Sun, et al., "Cross-Domain-Aware Worker Selection with Training for Crowdsourced Annotation," in 2024 IEEE 40th International Conference on Data Engineering (ICDE), Utrecht, Netherlands, 2024 pp. 249-262. doi: 10.1109/ICDE60146.2024.00026

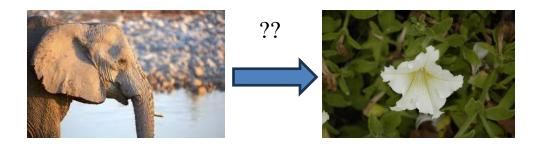
Crowd-sourced / Human-in-the-loop - background

• The **answering history of workers** (prior domain knowledge) can help select high-quality workers when **annotating a new domain** (target domain task).



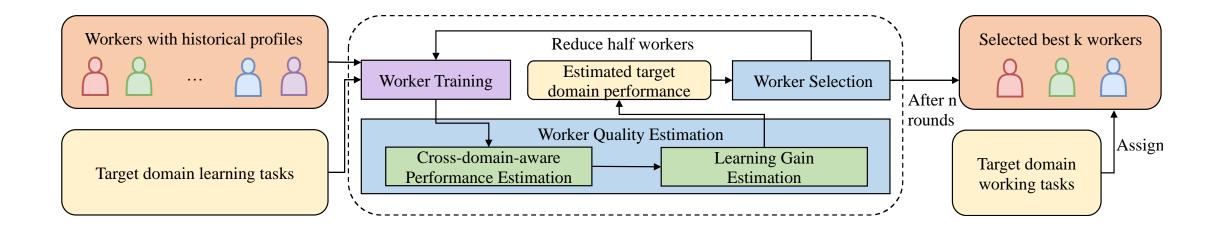
Crowd-sourced / Human-in-the-loop - challenges

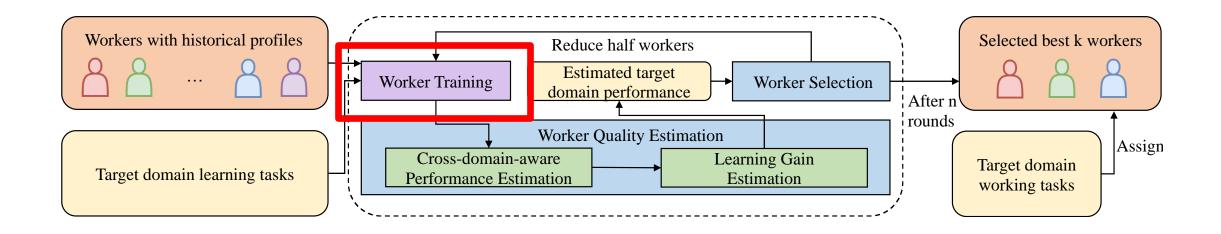
- Difficulty in accurately estimating the correlation between domains with a limited budget.
- Difficulty in estimating the workers' dynamic knowledge change during the question-answering worker training process.



Crowd-sourced / Human-in-the-loop - definition

- Cross-domain-aware worker selection with training:
 - Given target domain tasks $T = \{T_l, T_w\}$, the total budget B, and worker pool W with each worker w_i 's historical profile h_i .
 - Cross-domain-aware worker selection with training problem is to 1) assign no more than B tasks to |W| workers for training and 2) select top k workers with the highest possible annotation accuracy on working tasks *T_w*.





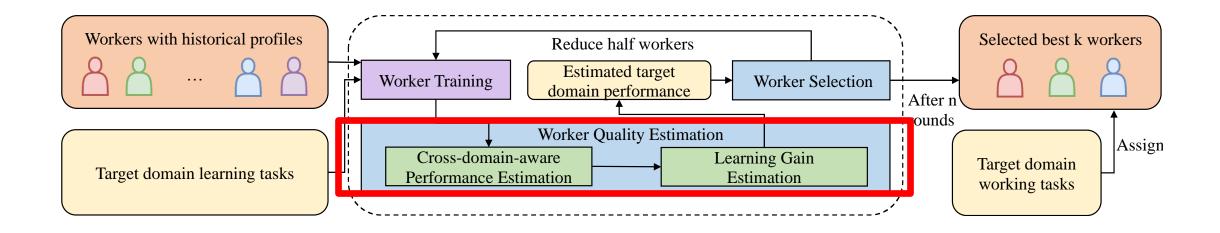
• Worker training is treated as an "Answer and learn" process for workers.

Are they petunias?

O Yes

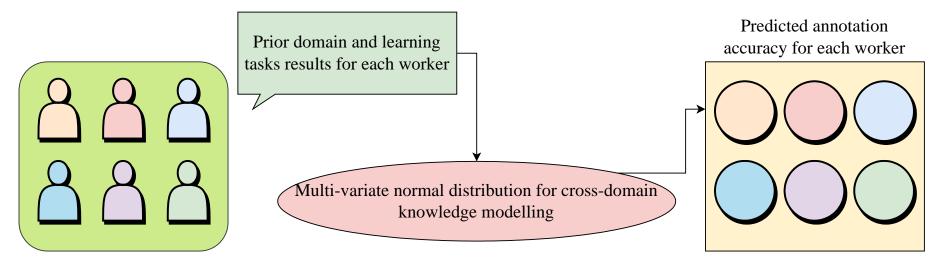
🔘 No

× No

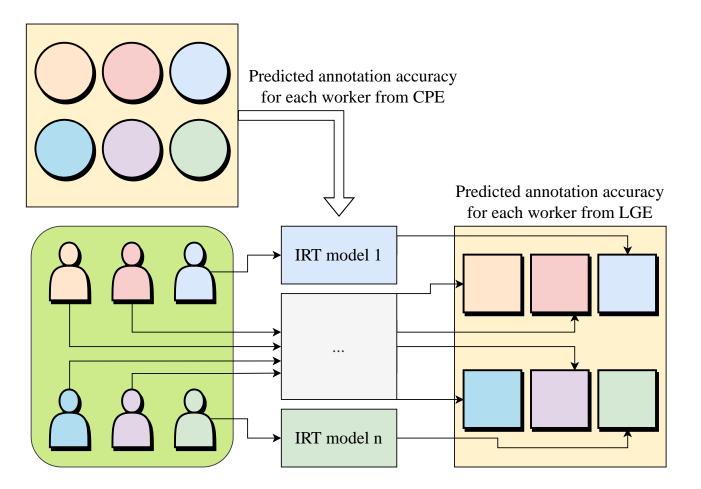


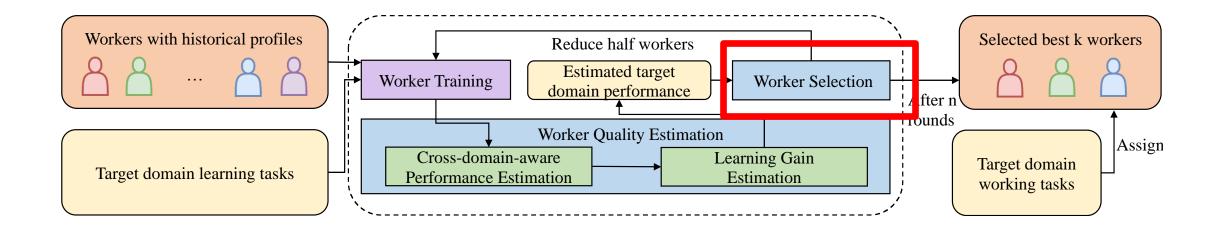
- We consider two factors in estimating workers' quality:
- Cross-domain correlation Cross-domain-aware Performance Estimation (CPE)
- **Worker learning gain** Learning Gain Estimation (LGE)

- Model the **correlation** between workers' **prior knowledge and the target domain** knowledge as a **multivariate normal distribution**.
- Record the correct and wrong number of learning tasks for each worker.
- Update the distribution with maximum likelihood estimation.
- **Predict the annotation accuracy** of each worker.



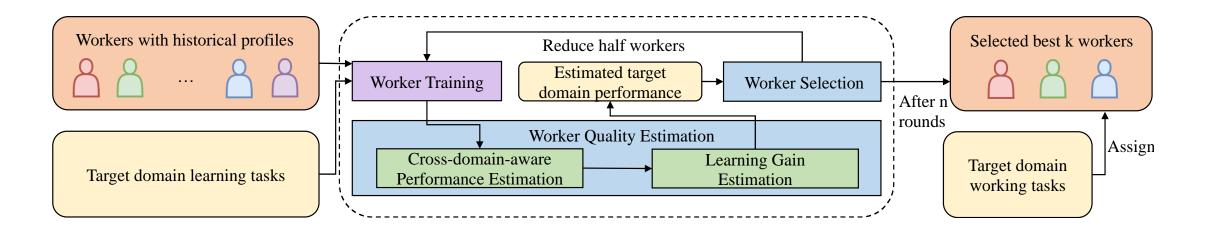
- Adapt the **Item Response Theory (IRT)** model to estimate the learning gain.
 - Compute the IRT scores on the **prior domains**.
 - Compute the IRT scores on the target domain learning tasks.
 - Update the learning parameter α_i for each worker based on the CPE scores and answering history.
- Predict the estimated scores in the current round.





• Adapt the ME algorithm to select the **top half of the workers** in the current round.

• Error bound:
$$O(\sqrt{\frac{nk}{B}}\ln{\frac{1}{\delta_c}}).$$



Crowd-sourced / Human-in-the-loop - experiments

TABLE VEXPERIMENT RESULTS

	RW-1	RW-2	S-1	S-2	S-3	S-4
US [11], [19]	0.764 (4.5% 个)	0.956 (0.5% 个)	0.765 (8.5% ↑)	0.775 (6.8% ↑)	0.815 (4.3% ↑)	0.865 (2.4% ↑)
ME [11], [19]	0.771 (3.5% 个)	0.944 (1.8% 个)	0.720 (15.3%)	0.785 (5.5% 个)	0.795 (6.9% ↑)	0.880 (0.7% ↑)
Li et al. [31]	0.771 (3.5% 个)	0.936 (2.7% 个)	0.780 (6.4% ↑)	0.805 (2.9% ↑)	0.845 (0.6% 个)	0.870 (1.8% 个)
Ours	0.798	0.961	0.830	0.828	0.850	0.886
Ground Truth	0.914	1.000	0.885	0.875	0.915	0.975

Crowd-sourced / Human-in-the-loop - takeaways

- Before the emergence of LM in data labeling, crowd-sourced / human-in-the-loop approaches were the main approaches that we can count on.
 - Pros:
 - Compared to black-box LM, easy debugging on the data labeling results (You can ask the crowd-workers about their choices).
 - Quality control and guarantee (You can monitor the results given by the crowd-workers and replace workers when the quality becomes low).
 - Accurate.
 - Cons:
 - Human labeling costs are high.
 - Human labeling is relatively slow.
 - Research Opportunities:
 - How to combine human labeling and LM-based labeling to reduce costs, improve speed, and guarantee quality.

Outline

- Background
- LM4DQ
 - Past: Crowd-sourced / Human-in-the-loop
 - Status-quo: Pre-train+fine-tune LMs
 - Status-quo: Low-resource LMs
 - Future: Zero-shot LMs
- Future Vision and Opportunities
 - Preliminary study on DQ4LM
 - LM4DQ and DQ4LM

Pre-train+fine-tune LMs - overview

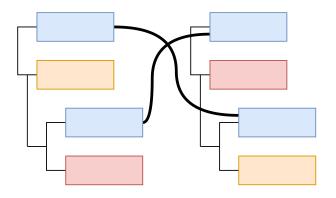
- RECA: Related Tables Enhanced Column Semantic Type Annotation Framework (VLDB 2023)
- Focus on enhancing tabular data labeling with inter-table context information.



9/23/2024[3] Y. Sun, H. Xin, and L. Chen, "RECA: Related Tables Enhanced Column Semantic Type Annotation Framework," *Proceedings of the VLDB Endowment*, vol. 16, no. 6, pp. 1319–1331, Feb. 2023, doi: https://doi.org/10.14778/3583140.3583149.

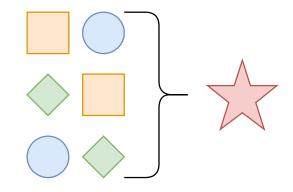
Pre-train+fine-tune LMs - background

- Accurate column semantic type labeling is important for various applications:
 - schema matching, data cleaning, data integration, etc.



schema matching

Title 1	Title 2	Title 3
Value 1	Value 2	Value 3
Value 4	???	Value 6
Value 7	Value 8	Value 9
Value 10	Value 11	Value 12



data cleaning

data integration

Pre-train+fine-tune LMs - challenges

• The utilization of inter-table context

?	?	?	?	
Amorcito corazón	L. Suárez	D. Olivera	2012-06-10	
A Nero Wolfe Mystery	S. M. Kaminsky	M. Chaykin	2002-08-18	

?	?	?	?
Chōriki Sentai Ohranger	T. Inoue	T. Satō	1996-02-23
Chōjin Sentai Jetman	T. Inoue	T. Wakamatsu	1992-02-14
Brewster Place	M. Angelou	O. Winfrey	1990-05-30
Anne of Green Gables: The Continuing Story	K. Sullivan	J. Crombie	2000-07-30
Angry Boys	C. Lilley	C. Lilley	2011-07-27
Alex Haley's Queen	A. Haley	Ann-Margret	1993-02-18
		•••	•••

WPPD

WPPD

Pre-train+fine-tune LMs - motivation

• Tables with the same/similar named entity schemata tend to be from the same/similar data source and thus tend to have the same/similar column semantic types.

?	?	?	?	?	?	?	?	?	?	?	?
Amorcito corazón	L. Suárez	D. Olivera	2012-06-10	Chōriki Sentai Ohranger	T. Inoue	T. Satō	1996-02-23	Donkey Kong Country	Nintendo	2006-12-08	2006
A Nero Wolfe Mystery	S. M. Kaminsky	M. Chaykin	2002-08-18	Chōjin Sentai Jetman	T. Inoue	T. Wakamatsu	1992-02-14	F-Zero	Nintendo	2006-12-08	2006
				Brewster Place	M. Angelou	O. Winfrey	1990-05-30	SimCity	Nintendo	2006-12-29	2006
		Anne of Green Gables: The Continuing Story	K. Sullivan	J. Crombie	2000-07-30	Super Castlevania IV	Konami	2006-12-29	2006		
				Angry Boys	C. Lilley	C. Lilley	2011-07-27	Street Fighter II: The World Warrior	Capcom	2007-01-19	2007
				Alex Haley's Queen	A. Haley	Ann-Margret	1993-02-18				
_											
	WPPD			WPP	D			WODI	C		

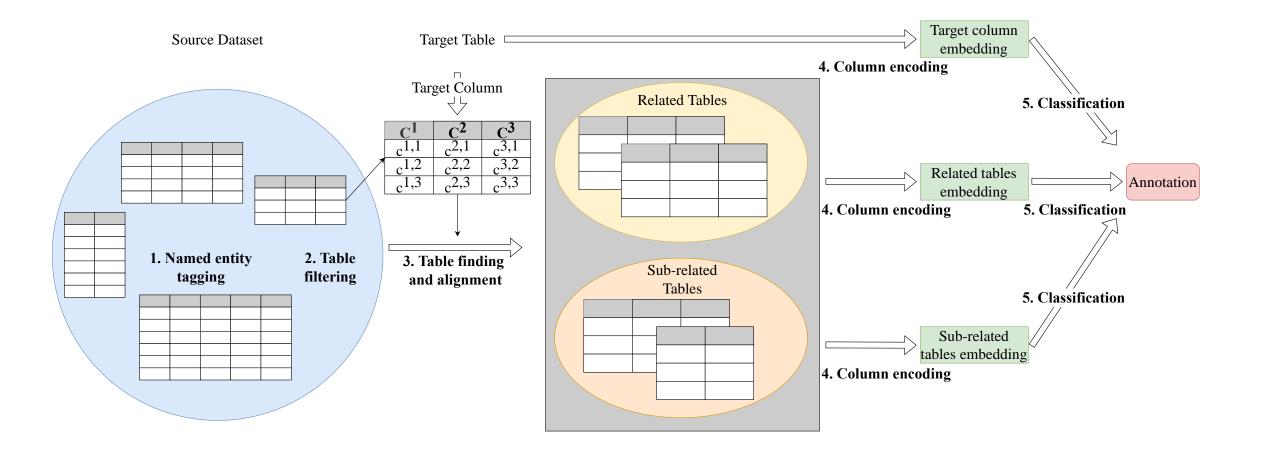
• W: Work of art; P: Person; D: Date; O: Organization

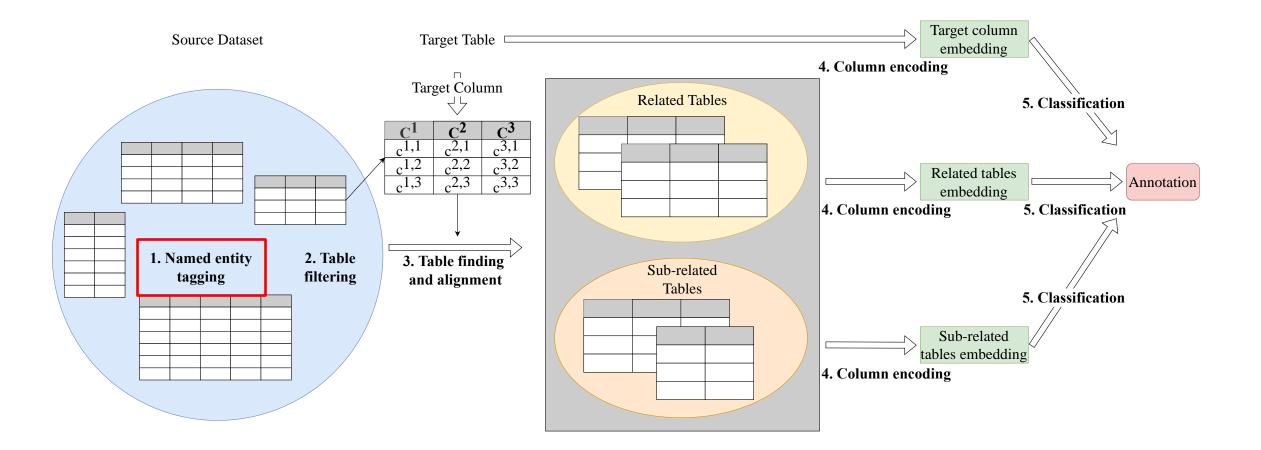
Pre-train+fine-tune LMs - definition

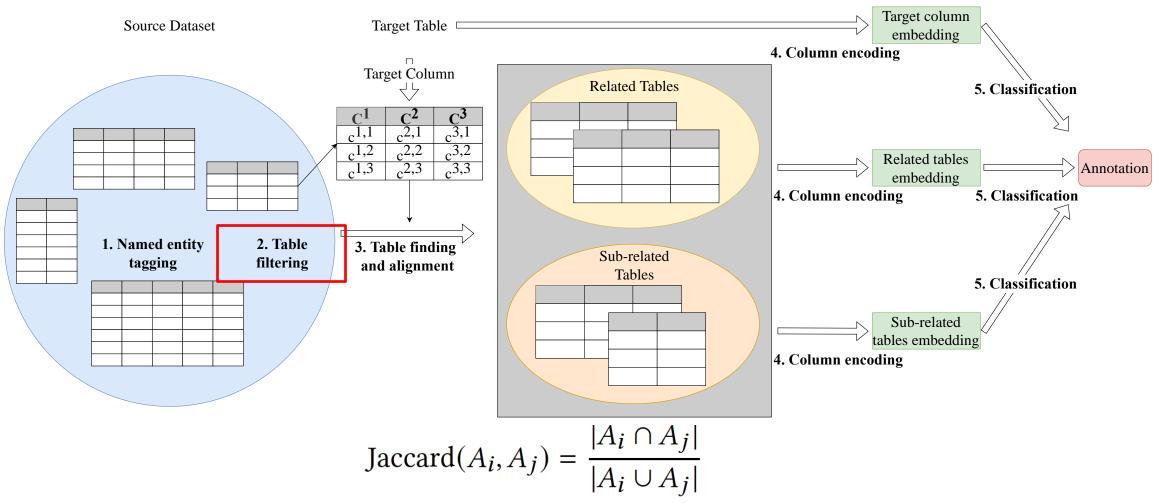
- Named Entity Schema: Named Entity Schema is the table schema generated based on the most frequent named entity type extracted from each column.
- Related Tables: The tables that share the same named entity schema and are similar in content (Jaccard Similarity > δ) with the original table.
- Sub-related Tables: The tables that share a similar named entity schema (the edit distance between their named entity schemata is less than a threshold) and are similar in content (Jaccard Similarity > δ) with the original table.

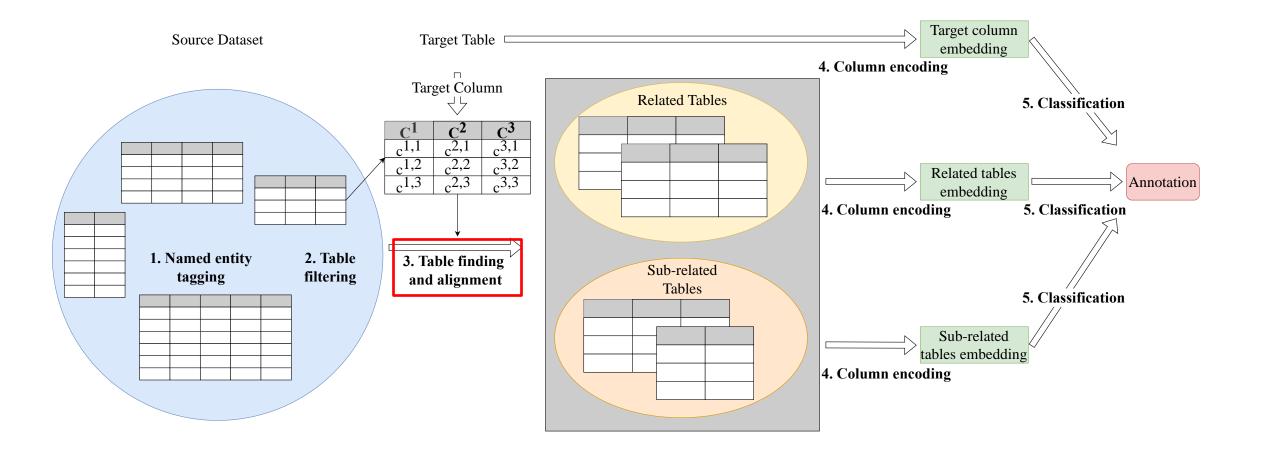
Pre-train+fine-tune LMs - definition

• (Column semantic type annotation): Given a table *T* from the data lake *D*, denote the target column as C_t in *T*. The column semantic type annotation model *W* annotates C_t with a semantic type $\bar{y}_t = W(C_t, T, D)$, such that \bar{y}_t best fits the semantics of C_t .

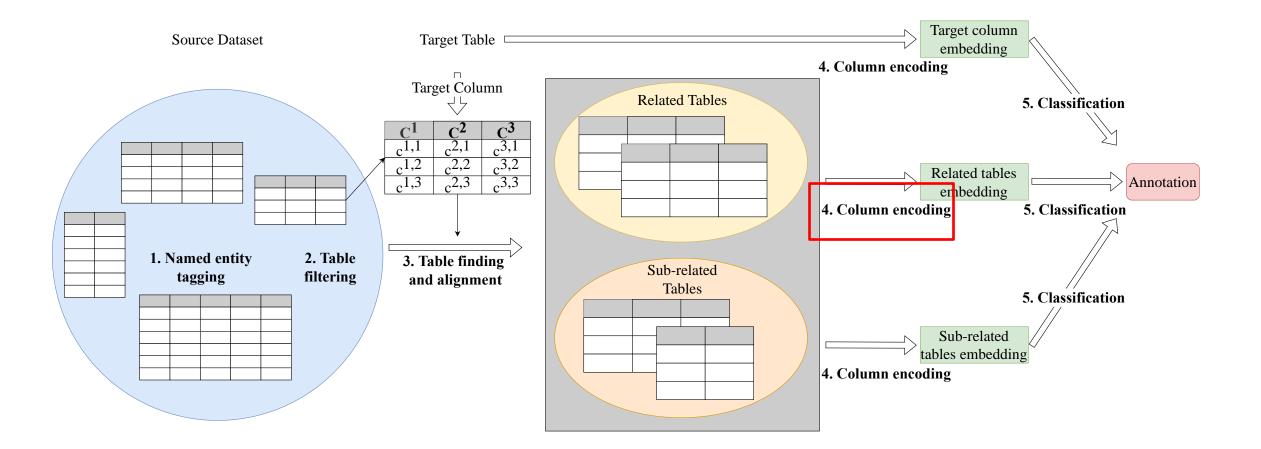






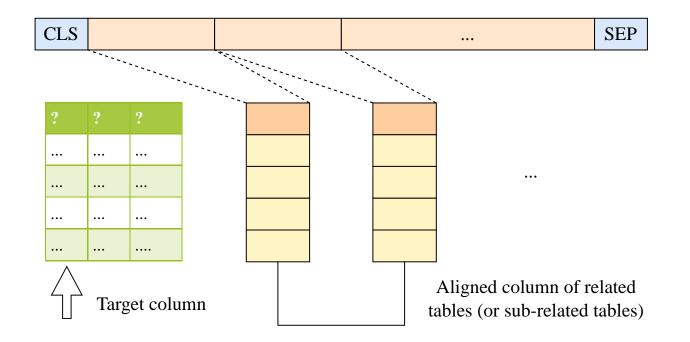


- Related tables: candidate tables T_j that share the same named entity schema as T_i .
- Sub-related tables: we consider the following two requirements:
 - Schema similarity: the named entity schemata should not be very different (edit distance less than a threshold).
 - Column location alignment: The named entity type of the target column matches with that of the column at the identical location in the sub-related table.

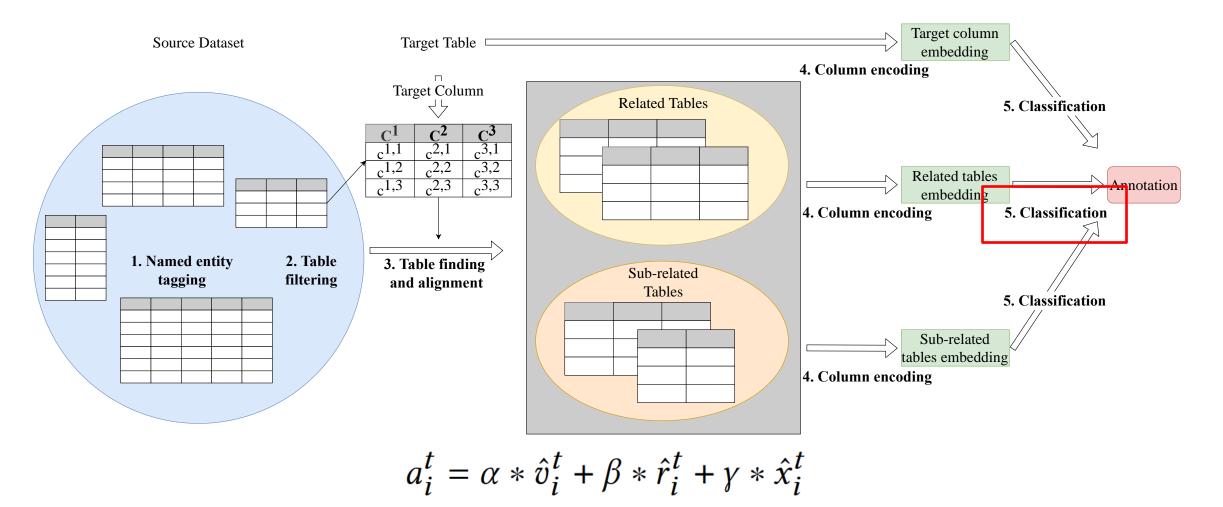


Pre-train+fine-tune LMs - methodology

- The target column is encoded with BERT solely.
- The aligned columns in related tables and sub-related tables are encoded separately with BERT.
- The tokens are allocated fairly to each related table (or sub-related table).



Pre-train+fine-tune LMs - methodology



Pre-train+fine-tune LMs - experiments

• RECA outperforms all the state-of-the-arts in terms of the F1 scores.

	Semtab2019	9 dataset	WebTables dataset		
Model names	Support-weighted F1	Macro average F1	Support-weighted F1	Macro average F1	
Sherlock [15]	0.646 ± 0.006	0.440 ± 0.009	0.844 ± 0.001	0.670 ± 0.010	
TaBERT [35]	0.768 ± 0.011	0.413 ± 0.019	0.896 ± 0.005	0.650 ± 0.011	
TABBIE [16]	0.799 ± 0.013	0.607 ± 0.011	0.929 ± 0.003	0.734 ± 0.019	
DODUO [30]	0.820 ± 0.009	0.630 ± 0.015	0.928 ± 0.001	0.742 ± 0.012	
RECA	0.853 ± 0.005	0.674 ± 0.007	0.937 ± 0.002	0.783 ± 0.014	

Pre-train+fine-tune LMs - takeaways

- The emergence of LM in data labeling opens up opportunities for utilizing LMs for DQ.
 - Pros:
 - Low annotation cost.
 - Cons:
 - Require annotated fine-tuning data for LMs (upon new data lakes).
 - Research Opportunities:
 - How to reduce the labeled training data required for LMs on performing DQ tasks / generalizing to new data lakes.

Outline

- Background
- LM4DQ
 - Past: Crowd-sourced / Human-in-the-loop
 - Status-quo: Pre-train+fine-tune LMs
 - Status-quo: Low-resource LMs
 - Future: Zero-shot LMs
- Future Vision and Opportunities
 - Preliminary study on DQ4LM
 - LM4DQ and DQ4LM

Low-resource LMs - overview

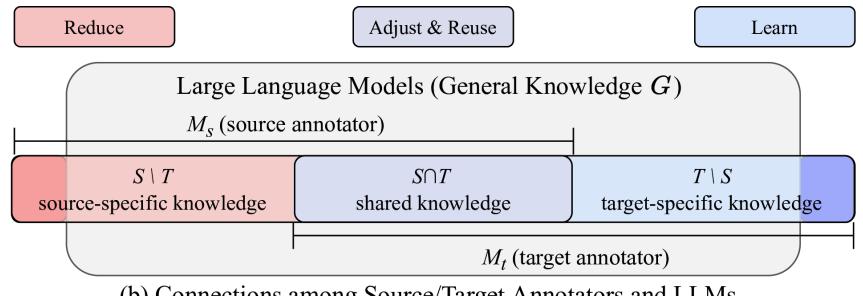
- LakeHopper: Cross Data Lakes Column Type Annotation through Model Adaptation (submitted to ICDE 2025)
- Focus on enhancing cross-domain tabular data labeling with the interaction of the world model and pre-trained models.

<i>Film</i> ¥	Date ₩	Person ▼	Scientist ¥	Date ¥	University ▼	
<i>C</i> _{<i>s</i>,1}	<i>C</i> _{<i>s</i>,2}	C _{s,3}	<i>C_{t,1}</i>	<i>C</i> _{<i>t</i>,2}	<i>C_{t,3}</i>	
2001: A Space Odyssey	1968	Stanley Kubrick	Harry Kesten	1958	Cornell University	
The Wizard of Oz	1939	Victor Fleming	Marc Kac	1937	University of Lviv	
Star Wars	1977	George Lucas	Hugo Sterinhaus	1911	University of Gottingen	
T _s in D _s				T _t in D _t		
(a) Sample Source and Target Data Lake Tables						

Low-resource LMs - overview

- Transform the source annotator into the target annotator.
- Reduce the source-specific knowledge.
- Adjust and reuse the shared knowledge.
- Learn the target-specific knowledge.

With the help of the general knowledge world model and resource-efficient fine-tuning process



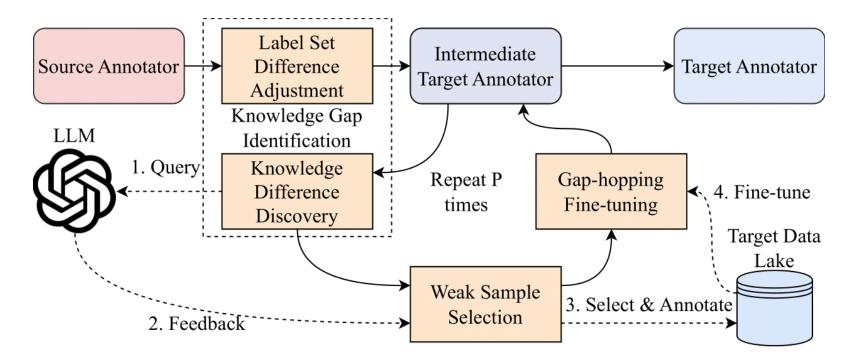
(b) Connections among Source/Target Annotators and LLMs

Low-resource LMs – definition

• (Cross Data Lakes Column Type Annotation): Given a model M_s fine-tuned on a source data lake D_s , a target data lake D_t , and a fixed budget N_t of training samples on the target data lake, the problem of cross data lakes column type annotation is to select at most N_t samples (each sample is a (C_i , y_i) pair) from the target data lake, and then use these training samples to obtain a transformed model M_t for the target data lake, such that M_t achieves the best column type annotation accuracy on the target data lake.

Low-resource LMs – methodology overview

- Knowledge gap identification: label set difference adjustment, knowledge differences found through the interaction with a general knowledge model (such as GPT)
- Weak sample selection: identify the weak samples through clustering
- Gap-hopping fine-tuning: fine-tuning with rehearsal incremental training



Low-resource LMs - experiments

LOW-RESOURCE EXPERIMENTAL RESULTS ON THE PUBLICBI TO VIZNET DATA LAKE TRANSFER.

	low1 1.69	% (239 col)	low2 2.59	% (364 col)	low3 4.29	% (614 col)	low4 5.99	% (864 col)	Avg.	Gain
	SW F1	MA F1	SW F1	MA F1						
Sherlock [22]	0.344	0.130	0.470	0.238	0.558	0.303	0.591	0.345	-	-
TABBIE [23]	0.505	0.204	0.565	0.268	0.637	0.278	0.709	0.315	-	-
DODUO [51]	0.499	0.190	0.569	0.254	0.644	0.280	0.742	0.416	-	-
Sudowoodo [59]	0.561	0.213	0.601	0.277	0.705	0.374	0.724	0.427	-	-
RECA [53]	0.587	0.206	0.610	0.216	0.716	0.303	0.749	0.312	-	-
LakeHopper(D)	0.612	0.323	0.664	0.343	0.746	0.425	0.783	0.486	15.2% ↑	43.4% ↑
- LLM	0.591	0.256	0.657	0.336	0.714	0.376	0.744	0.440	-	-
LakeHopper(S)	0.609	0.317	0.679	0.384	0.776	0.446	0.814	0.558	11.0% ↑	34.3% ↑
- LLM	0.592	0.269	0.630	0.350	0.706	0.390	0.739	0.455	-	-
LakeHopper(R)	0.621	0.331	0.705	0.412	0.749	0.506	0.793	0.522	8.0% ↑	71.4% ↑
- LLM	0.555	0.306	0.604	0.334	0.729	0.463	0.767	0.516	-	-

Low-resource LMs - takeaways

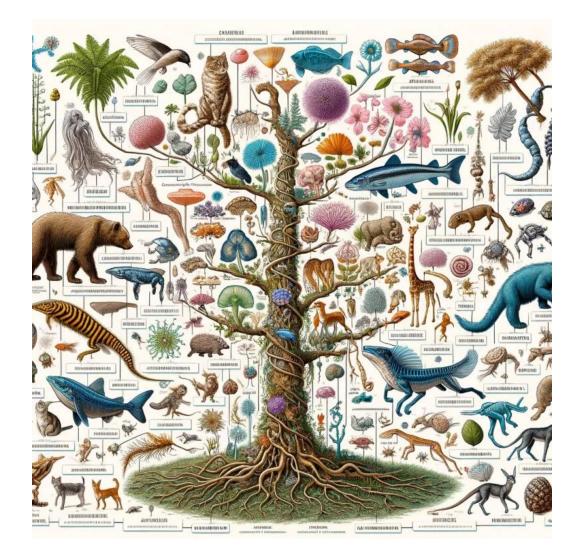
- The interactions between domain-specific LMs and general LMs enable the generalization across different domains for DQ tasks.
 - Pros:
 - Low annotation cost.
 - Generalize across domains with relatively low fine-tuning costs.
 - Cons:
 - Still not zero-shot, and requires a small amount of labeled data.
 - Rely on the general knowledge of LMs to generalize across domains.
 - Research Opportunities:
 - How to further improve on the generalizability and reduce the labeling cost.

Outline

- Background
- LM4DQ
 - Past: Crowd-sourced / Human-in-the-loop
 - Status-quo: Pre-train+fine-tune LMs
 - Status-quo: Low-resource LMs
 - Future: Zero-shot LMs
- Future Vision and Opportunities
 - Preliminary study on DQ4LM
 - LM4DQ and DQ4LM

Zero-shot LMs - overview

- Are Large Language Models a Good Replacement of Taxonomies? (VLDB 2024)
- Taxonomies provide a structured way to organize and categorize knowledge, which is indeed a kind of ``knowledge about knowledge" (meta-knowledge).
- Typically, nodes in taxonomies follow a tree-like structure and the relationships between nodes are depicted as hypernymy (Is-A) links (e.g., HKUST is a type of University).



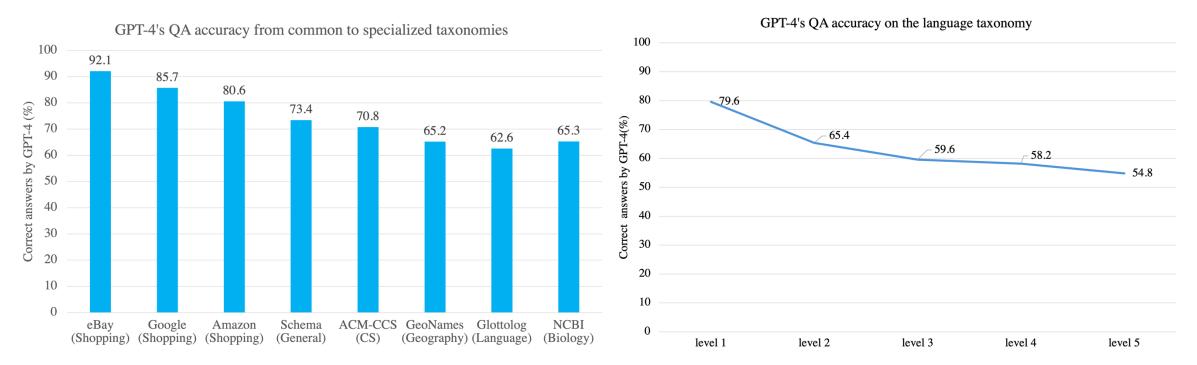
Zero-shot LMs - experiments

- We experimented with 18 SOTA LLMs on different taxonomies from common to specialized domains and root-to-leaf levels to see whether the existing LLMs internalize the taxonomy knowledge (zero-shot annotation on taxonomy data).
- Specifically, we ask each LLM about whether a child entity is a type of its parent entity.
- Record the QA accuracy for each LLM on each level on different taxonomies.

Domain	Taxonomy	# of entities	# of levels	# of entities in each level
Shopping	Google	5595	5	21-192-1349-2203-1830
Shopping	Amazon	43814	5	41-507-3910-13579-25777
Shopping	eBay	595	3	13-110-472
General	Schema	1346	6	3-17-215-403-436-272
CS	ACM-CCS	2113	5	13-84-543-1087-386
Geography	GeoNames	689	2	9-680
Language	Glottolog	11969	6	245-712-1048-1205-1366-7393
Biology	NCBI	2190125	7	53-309-514-1859-10215-107615-2069560

Zero-shot LMs - experiments

• Insights: LLMs are good at common domains and head (root-level) entities. But less reliable on specialized domains and tail (leaf-level) entities. Still cannot be zero-shot, all-rounded, and perfect on domain-specific tasks.



Zero-shot LMs - takeaways

- The advancement of LMs introduces the possibility of zero-shot DQ.
 - Pros:
 - Low annotation cost.
 - Zero generalization cost.
 - Cons:
 - The performance is not stable across different domains and different entities.
 - Research Opportunities:
 - How to achieve zero-shot, all-rounded, stable, unbiased DQ with LM.

Outline

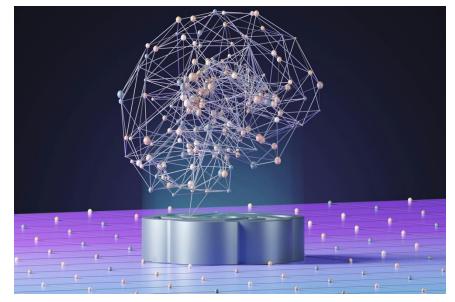
- Background
- LM4DQ
 - Past: Crowd-sourced / Human-in-the-loop
 - Status-quo: Pre-train+fine-tune LMs
 - Status-quo: Low-resource LMs
 - Future: Zero-shot LMs
- Future Vision and Opportunities
 - Preliminary study on DQ4LM
 - LM4DQ and DQ4LM

Data-quality-guaranteed LMs

Data Quality (focus on data labeling)

DQ4LM

Improved accuracy, generalizability, ... Reduced hallucination, bias, ...



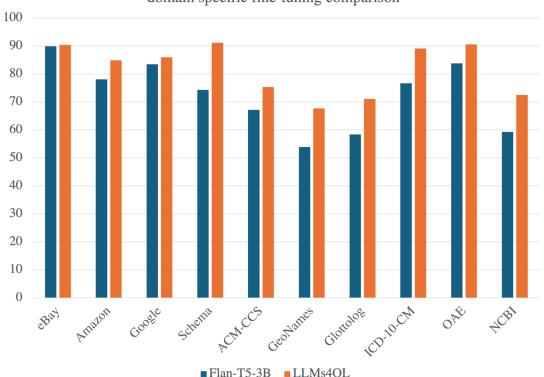
Language Models (BERT, GPT, Llama, ...)

How does DQ influence LMs?

- Training data quality is crucial for LMs
 - Size of data: large-scale data
 - Diversity of data: comprehensive data
 - Fairness of data: unbiased data
 - ...
- Garbage in garbage out!
- The quality of training data of LMs is more crucial than the size of the models [5]

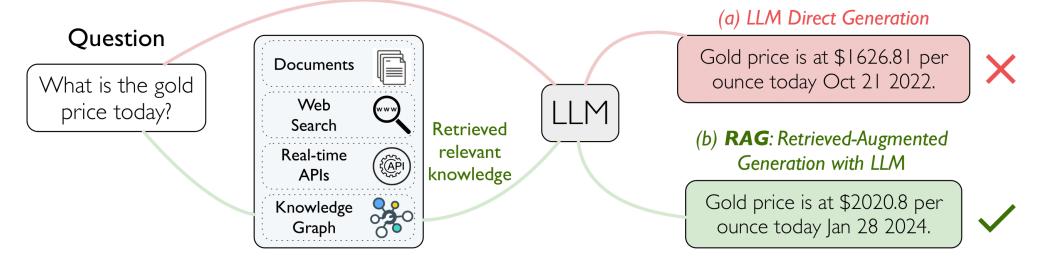
How does DQ influence LMs? Fine-tuning

- Are Large Language Models a Good Replacement of Taxonomies? (VLDB 2024)
- Insights: High-quality training data can benefit the performance of LMs through finetuning.



How does DQ influence LMs? RAG

- CRAG Comprehensive RAG Benchmark (Rebuttal <score: 7,7,7,7>, submitted to NeurIPS 2024)
- Considered questions based on timeliness and difficulty level.
- Provided both KG and Web data sources.
- Insights: High-quality retrieval data can benefit the performance of LMs through RAG.
- Providing the right and high-quality data is important in the era of LLMs (insight from our other ongoing RAG-based QA work)



9/23/2024 [7] Yang X, Sun K, Xin H, Sun Y, Bhalla N, Chen X, et al. CRAG -- Comprehensive RAG Benchmark [Internet]. arXiv.org. 2024 [cited 2024 Sep 5]. Available from: https://arxiv.org/abs/2406.04744

Research Opportunities: LM4DQ and DQ4LM

- My future endeavors: collaboration and fusion of the two fields, towards zero-shot all-rounded DQ and advanced LMs.
- LM4DQ: towards a zero-shot, all-in-one LM-based DQ general method.
- DQ4LM: improving LMs on fairness, timeliness, and domain-specific. Quantifying and optimizing the value/quality (size, diversity, fairness, etc.) of different data (structured, semi-structured, unstructured) for a specific LM (Bert, GPT, Llama) under a specific data usage scenario (fine-tuning, RAG) on different applications (task/domain-dependent).

