RECA: Related Tables Enhanced Column Semantic Type Annotation Framework

Yushi Sun¹, Hao Xin¹, Lei Chen^{1,2}

¹The Hong Kong University of Science and Technology, Hong Kong SAR, China ²The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

- Accurate column semantic type annotation is important for various applications:
 - schema matching, data cleaning, data integration, etc.

schema matching

Title 1	Title 2	Title 3	
Value 1	Value 2	Value 3	
Value 4	???	Value 6	
Value 7	Value 8	Value 9	
Value 10	Value 11	Value 12	

data cleaning

data integration

- Two challenges exist:
 - The proper handle of wide tables
 - The utilization of inter-table context

?	?	?	?	?	?		?							
Albania	27,39	3 \$11,8	300 \$	\$2,949.57	2,994,66	7	Parl	iamentary	Democra	су				
Algeria	2,381,74	5 \$159,	,000 \$	\$3,948.01	34,994,93	7	Rep	ublic						
Angola	1,246,70	5 \$85,8	310 \$	\$5,003.43	13,338,54	1	Rep	ublic; Mul	ltiparty Pre	sidential Reg	gime			
?	?	?		?	?			?						
Bahama	s 10,	070 \$7,	,538	\$21,547.	17 31	3,312		Constitut	tional Mon	archy with a	parliamentar	y system of g	overnment	
Banglad	esh 133,	910 \$10	00,100	\$481.36	158,57	0,535		Parliame	?	?	?	?	?	 ?
Belgium	30,	278 \$46	61,300	\$43,648.	01 10,43	1,477		Federal F	Canada	9,984,670	\$1,334,140	\$40,457	34,733,000	 Federal Parliamentary Democracy
									Chile	748,800	\$199,200	\$10,058.50	16,888,760	 republic
									China	9,326,410	\$5,745,000	\$2,459.43	1,336,718,015	 Communist State

- Two challenges exist:
 - The proper handle of wide tables
 - The utilization of inter-table context

Suárez 6. M. Kaminsky	D. Olivera	2012-06-10	Chōriki Sentai Ohranger		and the second	
S. M. Kaminsky			onoriki ocirtai onranger	T. Inoue	T. Satō	1996-02-2
	M. Chaykin	2002-08-18	Chōjin Sentai Jetman	T. Inoue	T. Wakamatsu	1992-02-1
			Brewster Place	M. Angelou	O. Winfrey	1990-05-3
			Anne of Green Gables: The Continuing Story	K. Sullivan	J. Crombie	2000-07-3
			Angry Boys	C. Lilley	C. Lilley	2011-07-2
			Alex Haley's Queen	A. Haley	Ann-Margret	1993-02-18
WDDD			WDD			
	WPPD	WPPD	WPPD	Anne of Green Gables: The Continuing Story Angry Boys Alex Haley's Queen	Anne of Green Gables: The Continuing Story K. Sullivan Angry Boys C. Lilley Alex Haley's Queen A. Haley	Anne of Green Gables: The Continuing StoryK. SullivanJ. CrombieAngry BoysC. LilleyC. LilleyAlex Haley's QueenA. HaleyAnn-Margret

• Tables with the same/similar named entity schemata tend to be from the same/similar data source and thus tend to have the same/similar column semantic types.

?	?	?	?	?	?	?	?	?	?	?	?
Amorcito corazón	L. Suárez	D. Olivera	2012-06-10	Chōriki Sentai Ohranger	T. Inoue	T. Satō	1996-02-23	Donkey Kong Country	Nintendo	2006-12-08	2006
A Nero Wolfe Mystery	S. M. Kaminsky	M. Chaykin	2002-08-18	Chōjin Sentai Jetman	T. Inoue	T. Wakamatsu	1992-02-14	F-Zero	Nintendo	2006-12-08	2006
				Brewster Place	M. Angelou	O. Winfrey	1990-05-30	SimCity	Nintendo	2006-12-29	2006
				Anne of Green Gables: The Continuing Story	K. Sullivan	J. Crombie	2000-07-30	Super Castlevania IV	Konami	2006-12-29	2006
				Angry Boys	C. Lilley	C. Lilley	2011-07-27	Street Fighter II: The World Warrior	Capcom	2007-01-19	2007
				Alex Haley's Queen	A. Haley	Ann-Margret	1993-02-18				
	WPPD			WPP	D			WODI	D		

• W: Work of art; P: Person; D: Date; O: Organization

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

2. Definitions - Concepts

- Named Entity Schema: Named Entity Schema is the table schema generated based on the most frequent named entity type extracted from each column.
- Related Tables: The tables that share the same named entity schema and are similar in content (Jaccard Similarity > δ) with the original table.
- Sub-related Tables: The tables that share a similar named entity schema (the edit distance between their named entity schemata is less than a threshold) and are similar in content (Jaccard Similarity > δ) with the original table.

2. Definitions - Problem

• (Column semantic type annotation): Given a web table *T* (without table headers) from the dataset *D*, denote the target column as C_t in *T*. The column semantic type annotation model *W* annotates C_t with a semantic type $\bar{y}_t = W$ (C_t , *T*, *D*), such that \bar{y}_t best fits the semantics of C_t .

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

3. Methodology - Named Entity Tagging

- Given a table *T* with *M* columns and *N* rows, we use the spaCy tagging tool to identify the named entities in each column and tag them.
- We further classify the DATE and PERSON types based on the data format.
 - E.g. DD-MM-YYYY; YYYY; January 16th 2022; 2023
 - E.g. J. K. Rowling; Anna
- We include an additional EMPTY type.
- The most frequent named entity type in each column forms the named entity schema.

3. Methodology - Table Filtering

• To filter out tables that are irrelevant in content, we compute the Jaccard similarity between the set of words for each table pair.

$$\operatorname{Jaccard}(A_i, A_j) = \frac{|A_i \cap A_j|}{|A_i \cup A_j|}$$

• If Jaccard $(A_i, A_j) > \delta$, include T_j as a candidate table of T_i .

3. Methodology - Table Finding and Alignment

- Related tables: candidate tables T_j that share the same named entity schema as T_i .
- Sub-related tables: we consider the following two requirements:
 - Schema similarity: the named entity schemata should not be very different (edit distance less than a threshold).
 - Column location alignment: The named entity type of the target column matches with that of the column at the identical location in the sub-related table.

3. Methodology - Column Encoding

- The target column is encoded with BERT solely.
- The aligned columns in related tables and sub-related tables are encoded separately with BERT.
- The tokens are allocated fairly to each related table (or sub-related table).

3. Methodology - Classification

- The embeddings of the target column, related tables, and sub-related tables are passed to three corresponding classification modules.
- Each classification module contains two layers: dropout and linear layers.
- The generated output embeddings are combined with learnable weights:

$$a_i^t = \alpha * \hat{v}_i^t + \beta * \hat{r}_i^t + \gamma * \hat{x}_i^t$$

• We use the cross-entropy loss as the loss function.

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

4. Experiments – Datasets and Metrics

• Datasets:

	WebTables	Semtab2019
# semantic types	78	275
# tables	32262	3045
# annotated columns	74141	7603
Avg. # rows	20.0	69.0
Avg. # columns	2.3	4.5
Avg. # annotated columns	2.3	2.5

- Metrics:
 - Support-weighted F1: weighted support of per type F1 scores
 - Macro average F1: average of per type F1 scores (emphasize on long-tail types)

4. Experiments – Main Results

• RECA outperforms all the state-of-the-arts in terms of the F1 scores.

	Semtab2019	9 dataset	WebTables	dataset
Model names	Support-weighted F1	Macro average F1	Support-weighted F1	Macro average F1
Sherlock [15]	0.646 ± 0.006	0.440 ± 0.009	0.844 ± 0.001	0.670 ± 0.010
TaBERT [35]	0.768 ± 0.011	0.413 ± 0.019	0.896 ± 0.005	0.650 ± 0.011
TABBIE [16]	0.799 ± 0.013	0.607 ± 0.011	0.929 ± 0.003	0.734 ± 0.019
DODUO [30]	0.820 ± 0.009	0.630 ± 0.015	0.928 ± 0.001	0.742 ± 0.012
RECA	0.853 ± 0.005	0.674 ± 0.007	0.937 ± 0.002	0.783 ± 0.014

4. Experiments – Ablation Study

- We conducted ablation study on RECA:
 - RECA target only: only encode the target column
 - RECA w/o re: encode both target column and aligned columns in sub-related tables
 - RECA w/o sub: encode both target column and aligned columns in related tables
- Performance drops on macro average F1 scores are greater than that on support-weighted F1 scores incorporating inter-table context can improve the annotation quality on less-populated semantic types.

	Semtab2019	9 dataset	WebTables dataset			
Model names	Support-weighted F1	Macro average F1	Support-weighted F1	Macro average F1		
RECA target only	0.808 ± 0.017	0.586 ± 0.039	0.911 ± 0.001	0.688 ± 0.014		
RECA w/o re	0.836 ± 0.012	0.641 ± 0.037	0.927 ± 0.001	0.748 ± 0.024		
RECA w/o sub	0.848 ± 0.009	0.650 ± 0.019	0.936 ± 0.002	0.774 ± 0.011		
RECA	0.853 ± 0.005	0.674 ± 0.007	0.937 ± 0.002	0.783 ± 0.014		

4. Experiments - Learning and Input Data Utilization

• RECA is efficient in utilizing the learning data and the input data.

Datasets	[%]	Support-weighted F1	Macro average F1
Semtab2019	25	0.697 ± 0.041	0.442 ± 0.074
Semtab2019	50	0.792 ± 0.020	0.566 ± 0.045
Semtab2019	75	0.820 ± 0.021	0.631 ± 0.047
Semtab2019	100	0.853 ± 0.005	0.674 ± 0.007
WebTables	25	0.909 ± 0.002	0.680 ± 0.008
WebTables	50	0.924 ± 0.004	0.738 ± 0.019
WebTables	75	0.930 ± 0.002	0.772 ± 0.013
WebTables	100	0.937 ± 0.002	0.783 ± 0.014

Learning data utilization

Input data utilization

Max	Support-weighted F1	Macro average F1
8	0.540 ± 0.009	0.319 ± 0.010
16	0.654 ± 0.013	0.436 ± 0.006
32	0.728 ± 0.010	0.507 ± 0.020
128	0.816 ± 0.017	0.620 ± 0.033
256	0.851 ± 0.011	0.662 ± 0.024
512	0.853 ± 0.005	0.674 ± 0.007
8	0.907 ± 0.004	0.737 ± 0.011
16	0.923 ± 0.002	0.762 ± 0.011
32	0.931 ± 0.002	0.780 ± 0.010
128	0.937 ± 0.002	0.783 ± 0.014
256	0.936 ± 0.003	0.783 ± 0.020
512	0.936 ± 0.001	0.780 ± 0.011
	8 16 32 128 256 512 8 16 32 128 256	8 0.540 ± 0.009 16 0.654 ± 0.013 32 0.728 ± 0.010 128 0.816 ± 0.017 256 0.851 ± 0.011 512 0.853 ± 0.005 8 0.907 ± 0.004 16 0.923 ± 0.002 32 0.931 ± 0.002 128 0.937 ± 0.002 256 0.936 ± 0.003

4. Experiments – Parameter Sensitivity

• RECA achieves stable performance when the Jaccard threshold is in the range of [0, 0.3].

 S-SW and S-MA stand for the support-weighted and macro average F1 scores on the Semtab2019 dataset; W-SW and W-MA stand for the support-weighted and macro average F1 scores on the WebTables dataset.

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

5. Summary

- We propose RECA for column semantic type annotation. RECA extracts and leverages inter-table context to enhance the annotation quality of the target column, thus resolving the wide table issue.
- We define a novel named entity schema for RECA to efficiently align related and sub-related tables, which resolves the difficulty of incorporating inter-table context.
- We conduct extensive experiments on two real-world web table datasets to show that RECA outperforms all the state-of-the-art methods. The result demonstrates the effectiveness of utilizing the inter-table context to annotate column semantic types accurately.
- We show that RECA is data efficient and learning efficient, since it requires shorter input token sequences and fewer training data to achieve high performance.