RECA: Related Tables Enhanced Column Semantic Type Annotation Framework

Yushi Sun¹, Hao Xin¹, Lei Chen^{1,2}

¹The Hong Kong University of Science and Technology, Hong Kong SAR, China ²The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

- Accurate column semantic type annotation is important for various applications:
	- schema matching, data cleaning, data integration, etc.

schema matching and the set of the data cleaning data integration data integration

- Two challenges exist:
	- The proper handle of wide tables
	- The utilization of inter-table context

- Two challenges exist:
	- The proper handle of wide tables
	- The utilization of inter-table context

• Tables with the same/similar named entity schemata tend to be from the same/similar data source and thus tend to have the same/similar column semantic types.

• W: Work of art; P: Person; D: Date; O: Organization

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

2. Definitions - Concepts

- Named Entity Schema: Named Entity Schema is the table schema generated based on the most frequent named entity type extracted from each column.
- Related Tables: The tables that share the same named entity schema and are similar in content (Jaccard Similarity $> \delta$) with the original table.
- Sub-related Tables: The tables that share a similar named entity schema (the edit distance between their named entity schemata is less than a threshold) and are similar in content (Jaccard Similarity $> \delta$) with the original table.

2. Definitions - Problem

• (Column semantic type annotation): Given a web table T (without table headers) from the dataset *D,* denote the target column as \mathcal{C}_t in $T.$ The column semantic type annotation model *W* annotates C_t with a semantic type $\overline{y}_t = W$ (C_t, T, D) , such that \bar{y}_t best fits the semantics of C_t .

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

3. Methodology - Named Entity Tagging

- Given a table T with M columns and N rows, we use the spaCy tagging tool to identify the named entities in each column and tag them.
- We further classify the DATE and PERSON types based on the data format.
	- E.g. DD-MM-YYYY; YYYY; January 16th 2022; 2023
	- E.g. J. K. Rowling; Anna
- We include an additional EMPTY type.
- The most frequent named entity type in each column forms the named entity schema.

3. Methodology - Table Filtering

• To filter out tables that are irrelevant in content, we compute the Jaccard similarity between the set of words for each table pair.

$$
\text{Jaccard}(A_i, A_j) = \frac{|A_i \cap A_j|}{|A_i \cup A_j|}
$$

• If Jaccard $(A_i, A_j) > \delta$, include T_j as a candidate table of T_i .

3. Methodology - Table Finding and Alignment

- Related tables: candidate tables T_j that share the same named entity schema as T_i .
- Sub-related tables: we consider the following two requirements:
	- Schema similarity: the named entity schemata should not be very different (edit distance less than a threshold).
	- Column location alignment: The named entity type of the target column matches with that of the column at the identical location in the sub-related table.

3. Methodology - Column Encoding

- The target column is encoded with BERT solely.
- The aligned columns in related tables and sub-related tables are encoded separately with BERT.
- The tokens are allocated fairly to each related table (or sub-related table).

3. Methodology - Classification

- The embeddings of the target column, related tables, and sub-related tables are passed to three corresponding classification modules.
- Each classification module contains two layers: dropout and linear layers.
- The generated output embeddings are combined with learnable weights:

$$
a_i^t = \alpha * \hat{v}_i^t + \beta * \hat{r}_i^t + \gamma * \hat{x}_i^t
$$

• We use the cross-entropy loss as the loss function.

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

4. Experiments – Datasets and Metrics

• Datasets:

- Metrics:
	- Support-weighted F1: weighted support of per type F1 scores
	- Macro average F1: average of per type F1 scores (emphasize on long-tail types)

4. Experiments – Main Results

• RECA outperforms all the state-of-the-arts in terms of the F1 scores.

4. Experiments – Ablation Study

- We conducted ablation study on RECA:
	- RECA target only: only encode the target column
	- RECA w/o re: encode both target column and aligned columns in sub-related tables
	- RECA w/o sub: encode both target column and aligned columns in related tables
- Performance drops on macro average F1 scores are greater than that on support-weighted F1 scores – incorporating inter-table context can improve the annotation quality on less-populated semantic types.

4. Experiments - Learning and Input Data Utilization

• RECA is efficient in utilizing the learning data and the input data.

Datasets	$\lceil \% \rceil$	Support-weighted F1	Macro average F1
Semtab2019	25	0.697 ± 0.041	0.442 ± 0.074
Semtab2019	50	0.792 ± 0.020	0.566 ± 0.045
Semtab2019	75	0.820 ± 0.021	0.631 ± 0.047
Semtab2019	100	0.853 ± 0.005	0.674 ± 0.007
WebTables	25	0.909 ± 0.002	0.680 ± 0.008
WebTables	50	0.924 ± 0.004	0.738 ± 0.019
WebTables	75	0.930 ± 0.002	0.772 ± 0.013
WebTables	100	0.937 ± 0.002	0.783 ± 0.014

Learning data utilization **Input data utilization** Input data utilization

Datasets	Max	Support-weighted F1	Macro average F1
Semtab2019	8	0.540 ± 0.009	0.319 ± 0.010
Semtab2019	16	0.654 ± 0.013	0.436 ± 0.006
Semtab2019	32	0.728 ± 0.010	0.507 ± 0.020
Semtab2019	128	0.816 ± 0.017	0.620 ± 0.033
Semtab2019	256	0.851 ± 0.011	0.662 ± 0.024
Semtab2019	512	0.853 ± 0.005	0.674 ± 0.007
WebTables	8	0.907 ± 0.004	0.737 ± 0.011
WebTables	16	0.923 ± 0.002	0.762 ± 0.011
WebTables	32	0.931 ± 0.002	0.780 ± 0.010
WebTables	128	0.937 ± 0.002	0.783 ± 0.014
WebTables	256	0.936 ± 0.003	0.783 ± 0.020
WebTables	512	0.936 ± 0.001	0.780 ± 0.011

4. Experiments – Parameter Sensitivity

• RECA achieves stable performance when the Jaccard threshold is in the range of [0, 0.3].

• S-SW and S-MA stand for the support-weighted and macro average F1 scores on the Semtab2019 dataset; W-SW and W-MA stand for the support-weighted and macro average F1 scores on the WebTables dataset.

Outline

- Background and Motivation
- Definitions
- Methodology
- Experiments
- Summary

5. Summary

- We propose RECA for column semantic type annotation. RECA extracts and leverages inter-table context to enhance the annotation quality of the target column, thus resolving the wide table issue.
- We define a novel named entity schema for RECA to efficiently align related and sub-related tables, which resolves the difficulty of incorporating inter-table context.
- We conduct extensive experiments on two real-world web table datasets to show that RECA outperforms all the state-of-the-art methods. The result demonstrates the effectiveness of utilizing the inter-table context to annotate column semantic types accurately.
- We show that RECA is data efficient and learning efficient, since it requires shorter input token sequences and fewer training data to achieve high performance.