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• Accurate column semantic type annotation is important for various
applications:
• schema matching, data cleaning, data integration, etc.

 
schema matching data cleaning data integration
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• Two challenges exist:
• The proper handle of wide tables

• The utilization of inter-table context
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• Tables with the same/similar named entity schemata tend to be from the
same/similar data source and thus tend to have the same/similar column
semantic types.

• W: Work of art; P: Person; D: Date; O: Organization
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• Named Entity Schema: Named Entity Schema is the table schema generated 
based on the most frequent named entity type extracted from each column.

• Related Tables: The tables that share the same named entity schema and are
similar in content (Jaccard Similarity > δ) with the original table.

• Sub-related Tables: The tables that share a similar named entity schema (the 
edit distance between their named entity schemata is less than a threshold)
and are similar in content (Jaccard Similarity > δ) with the original table.

2. Definitions - Concepts
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• (Column semantic type annotation): Given a web table 𝑇 (without table 
headers) from the dataset 𝐷, denote the target column as 𝐶𝑡 in 𝑇. The column 
semantic type annotation model 𝑊 annotates 𝐶𝑡 with a semantic type ത𝑦𝑡 = 𝑊 
(𝐶𝑡, 𝑇, 𝐷), such that ത𝑦𝑡 best fits the semantics of 𝐶𝑡.

2. Definitions - Problem
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• Given a table 𝑇 with 𝑀 columns and 𝑁 rows, we use the spaCy tagging tool
to identify the named entities in each column and tag them.

• We further classify the DATE and PERSON types based on the data format.
• E.g. DD-MM-YYYY; YYYY; January 16th 2022; 2023

• E.g. J. K. Rowling; Anna

• We include an additional EMPTY type.

• The most frequent named entity type in each column forms the named entity
schema.

3. Methodology - Named Entity Tagging
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• To filter out tables that are irrelevant in content, we compute the Jaccard
similarity between the set of words for each table pair.

• If Jaccard 𝐴𝑖 , 𝐴𝑗 > δ, include 𝑇𝑗 as a candidate table of 𝑇𝑖.

3. Methodology - Table Filtering
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• Related tables: candidate tables 𝑇𝑗 that share the same named entity schema

as 𝑇𝑖.

• Sub-related tables: we consider the following two requirements:
• Schema similarity: the named entity schemata should not be very different (edit distance

less than a threshold).

• Column location alignment: The named entity type of the target column matches with 
that of the column at the identical location in the sub-related table.

3. Methodology - Table Finding and Alignment
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• The target column is encoded with BERT solely.

• The aligned columns in related tables and sub-related tables are encoded
separately with BERT.

• The tokens are allocated fairly to each related table (or sub-related table).

3. Methodology - Column Encoding
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• The embeddings of the target column, related tables, and sub-related tables
are passed to three corresponding classification modules.

• Each classification module contains two layers: dropout and linear layers.

• The generated output embeddings are combined with learnable weights:

• We use the cross-entropy loss as the loss function.

3. Methodology - Classification
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• Datasets:

• Metrics:
• Support-weighted F1: weighted support of per type F1 scores

• Macro average F1: average of per type F1 scores (emphasize on long-tail types)

4. Experiments – Datasets and Metrics
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• RECA outperforms all the state-of-the-arts in terms of the F1 scores.

4. Experiments – Main Results
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• We conducted ablation study on RECA:
• RECA target only: only encode the target column

• RECA w/o re: encode both target column and aligned columns in sub-related tables

• RECA w/o sub: encode both target column and aligned columns in related tables

• Performance drops on macro average F1 scores are greater than that on
support-weighted F1 scores – incorporating inter-table context can improve
the annotation quality on less-populated semantic types.

4. Experiments – Ablation Study
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• RECA is efficient in utilizing the learning data and the input data.

Learning data utilization    Input data utilization

4. Experiments - Learning and Input Data Utilization
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• RECA achieves stable performance when the Jaccard threshold is in the range
of [0, 0.3]. 

4. Experiments – Parameter Sensitivity
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• S-SW and S-MA stand 
for the support-weighted 
and macro average F1 
scores on the Semtab2019 
dataset; W-SW and W-
MA stand for the 
support-weighted and 
macro average F1 scores 
on the WebTables dataset.
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• We propose RECA for column semantic type annotation. RECA extracts and 
leverages inter-table context to enhance the annotation quality of the target column, 
thus resolving the wide table issue.

• We define a novel named entity schema for RECA to efficiently align related and 
sub-related tables, which resolves the difficulty of incorporating inter-table context.

• We conduct extensive experiments on two real-world web table datasets to show 
that RECA outperforms all the state-of-the-art methods. The result demonstrates the 
effectiveness of utilizing the inter-table context to annotate column semantic types 
accurately.

• We show that RECA is data efficient and learning efficient, since it requires shorter 
input token sequences and fewer training data to achieve high performance.

5. Summary
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