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• The process of data curation involves all essential processes for systematic and regulated 
data annotation, integration, and organization, along with the ability to enhance the value of 
that data [1, 2].

• Data Annotation: annotating raw data to provide standardized context and meaning.

• The necessity of domain knowledge and the inherent difficulties of the annotation tasks
call for a novel cross-domain annotator training and selection scheme.

Background: Data Curation

1/12/2025 4[1] A. Freitas and E. Curry, “Big data curation,” New horizons for a data-driven economy: A roadmap for usage and exploitation of big data in Europe, pp. 87–118, 2016.

[2] R. J. Miller et al., “Big data curation.” in COMAD, 2014, p. 4.
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• The process of data curation involves all essential processes for systematic and regulated 
data annotation, integration, and organization, along with the ability to enhance the value of 
that data [1, 2].

• Data Integration: combining data from different sources to provide a unified view or 
dataset.

• Need for a deeper understanding of table context to clarify the subtle differences in
column semantic -> accurate column semantic type annotation

Background: Data Curation

1/12/2025 5[1] A. Freitas and E. Curry, “Big data curation,” New horizons for a data-driven economy: A roadmap for usage and exploitation of big data in Europe, pp. 87–118, 2016.

[2] R. J. Miller et al., “Big data curation.” in COMAD, 2014, p. 4.



• The process of data curation involves all essential processes for systematic and regulated 
data annotation, integration, and organization, along with the ability to enhance the value of 
that data [1, 2].

• Data Organization: involves categorizing, storing, and maintaining data in a way that 
makes it easy to use.

• Further exploration of novel data organization paradigm in the era of LLMs.

Background: Data Curation

1/12/2025 6

[1] A. Freitas and E. Curry, “Big data curation,” New horizons for a data-driven economy: A roadmap for usage and exploitation of big data in Europe, pp. 87–118, 2016.

[2] R. J. Miller et al., “Big data curation.” in COMAD, 2014, p. 4.

[3] Andreas, “Taxonomy: Tracing Its Greek Roots to Modern Biological Classification - U speak Greek,” U speak Greek, Dec. 25, 2023. https://uspeakgreek.com/science/biology/taxonomy-tracing-

its-greek-roots-to-modern-biological-classification/ (accessed Aug. 18, 2024).



• Background

• Data Annotation: Cross-domain-aware Worker Selection with Training for 
Crowdsourced Annotation

• Data Integration: RECA: Related Tables Enhanced Column Semantic Type 
Annotation Framework

• Data Organization: Are Large Language Models a Good Replacement of 
Taxonomies?

• Future Vision and Opportunities

Outline

1/12/2025 7



• Cross-domain-aware Worker Selection with Training for Crowdsourced Annotation (ICDE
2024)

• Crowdsourcing is preferable for obtaining high-quality data labels for large-scale datasets.

• Worker Selection is important in Crowdsourcing.

• How to design an allocation scheme for golden questions (questions with ground truth
answers that are used for worker training/selection) to train and select high-performance 
crowd workers for the incoming crowdsourced tasks remains a challenge.

Overview

1/12/2025 8[4] Y. Sun, et al., “Cross-Domain-Aware Worker Selection with Training for Crowdsourced Annotation,” in 2024 IEEE 40th International Conference on Data Engineering (ICDE), 

Utrecht, Netherlands, 2024 pp. 249-262. doi: 10.1109/ICDE60146.2024.00026

Crowdsourced tasks



• Many companies such as JD, Alibaba, and Baidu have their commercial crowdsourcing 
platforms with worker pools, which record the answering history of workers.

• The answering history of workers (prior domain knowledge) can help select high-quality 
workers when annotating a new domain (target domain task).

Background
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• Multi-variate normal distribution to model the correlation of
the crowd-worker as a group over different domains.

• Maximum Likelihood Estimation to estimate the parameters
in the distribution based on the worker training results.



Methodology
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• Maximum likelihood estimation:

• Updated annotation accuracy:



Methodology
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• Item Response Theory (IRT) to model the dynamic worker
knowledge change during the training process for each
individual worker.



Methodology
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• IRT score:

• Update the learning parameter α𝑖:



Methodology
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• Medium Elimination, preserve the better half of the workers
in the current round and enter the next round.

• Error bound: 𝑂(
𝑛𝑘

𝐵
ln

1

δ𝑐
).



Datasets
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• Datasets:

   |W|: number of crowdsourced workers

   Q: number of learning tasks per batch

   k: number of top-k desired workers

   B: total worker selection budget



Metrics
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• Metric: averaged annotation accuracy of the selected top-k workers on the target

domain working task.

Method 1

Method 2

Method 3

Working Tasks

Prior Domains and Learning Tasks

Evaluate



Baselines
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• Baselines: We considered three baselines, Universal Sampling (US), Medium

Elimination (ME), and Li et al.

• US: use the budget for all the workers equally and select the top k workers

• ME: allocates the budget in rounds and eliminates the workers by half in each

round based on the accuracy of the learning tasks

• Li et al.: compute the correlation between the prior domain historical results

with the target domain performance



Experiments
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• Stability over the parameter k (number of desired workers)

Experiments
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• Stability over the parameter Q (number of learning tasks per batch)

Experiments
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• We incorporate the cross-domain knowledge information and propose a 
novel Median Elimination-based worker selection with training algorithm 
to find high-quality workers for data annotation.

• We comprehensively consider the learning gain of workers during the 
learning task worker training process over the new domain to get a better 
estimate of the dynamic change in worker quality.

• We collect two novel cross-domain worker selection datasets for the 
community to study the problem of cross-domain worker selection with 
training.

• We conduct extensive experiments on real-world and synthesized datasets 
to evaluate the performance of our proposed method comprehensively.

Summary
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Overview

1/12/2025 25[5] Y. Sun, H. Xin, and L. Chen, “RECA: Related Tables Enhanced Column Semantic Type Annotation Framework,” Proceedings of the VLDB Endowment, vol. 16, no. 6, pp. 

1319–1331, Feb. 2023, doi: https://doi.org/10.14778/3583140.3583149.

• RECA: Related Tables Enhanced Column Semantic Type Annotation Framework
(VLDB 2023)

• Focus on enhancing table column semantic type annotation with inter-table context
information.



• (Column semantic type annotation): Given a table 𝑇 from the data lake 𝐷, 
denote the target column as 𝐶𝑡 in 𝑇. The column semantic type annotation
model 𝑊 annotates 𝐶𝑡 with a semantic type ത𝑦𝑡 = 𝑊 (𝐶𝑡, 𝑇, 𝐷), such that ത𝑦𝑡 best 
fits the semantics of 𝐶𝑡.

Definition
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Background
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• Accurate column semantic type labeling is important for various
applications:
• schema matching, data cleaning, data integration, etc.

 
schema matching data cleaning data integration



Challenges
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• Existing works (Sherlock, Sato, DODUO, TABBIE, etc.) focus on
incorporating the inner-table context.

• Our work focuses on the utilization of inter-table context, which is
challenging.

 



Motivation
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• Named Entity Schema: table schema generated based on the most frequent named entity 
type extracted from each column.

• Tables with the same/similar named entity schemata tend to be from the same/similar data
source and thus tend to have the same/similar column semantic types.

• W: Work of art; P: Person; D: Date; O: Organization



• Related Tables: The tables that share the same named entity schema and are
similar in content (Jaccard Similarity > δ) with the original table.

• Sub-related Tables: The tables that share a similar named entity schema (the 
edit distance between their named entity schemata is less than a threshold)
and are similar in content (Jaccard Similarity > δ) with the original table.

Concepts
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• Given a table 𝑇 with 𝑀 columns and 𝑁 rows, we use the spaCy tagging tool
to identify the named entities in each column and tag them.

• We further classify the DATE and PERSON types based on the data format.
• E.g. DD-MM-YYYY; YYYY; January 16th 2022; 2023

• E.g. J. K. Rowling; Anna

• We include an additional EMPTY type.

• The most frequent named entity type in each column forms the named entity
schema.

Methodology
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Named Entity Schema & Jaccard Similarity



Methodology
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• Related tables: candidate tables 𝑇𝑗 that share the same named entity schema

as 𝑇𝑖.

• Sub-related tables: we consider the following two requirements:
• Schema similarity: the named entity schemata should not be very different (edit distance

less than a threshold).

• Column location alignment: The named entity type of the target column matches with 
that of the column at the identical location in the sub-related table.
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• The target column is encoded with BERT solely.

• The aligned columns in related tables and sub-related tables are encoded
separately with BERT.

• The tokens are allocated fairly to each related table (or sub-related table).

Methodology
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• The embeddings of the target column, related tables, and sub-related tables
are passed to three corresponding classification modules.

• Each classification module contains two layers: dropout and linear layers.

• The generated output embeddings are combined with learnable weights:

• We use the cross-entropy loss as the loss function.

Methodology
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Experiments
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• Datasets:

• Metrics:
• Support-weighted F1: weighted support of per type F1 scores

• Macro average F1: average of per type F1 scores (emphasize on long-tail types)



• RECA outperforms all the state-of-the-arts in terms of the F1 scores.

Experiments
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• We conducted ablation study on RECA:
• RECA target only: only encode the target column

• RECA w/o re: encode both target column and aligned columns in sub-related tables

• RECA w/o sub: encode both target column and aligned columns in related tables

• Performance drops on macro average F1 scores are greater than that on
support-weighted F1 scores – incorporating inter-table context can improve
the annotation quality on less-populated semantic types.

Experiments
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• RECA is efficient in utilizing the learning data and the input data.

Learning data utilization    Input data utilization

Experiments
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• RECA achieves stable performance when the Jaccard threshold is in the range
of [0, 0.3]. 

Experiments
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• S-SW and S-MA stand 
for the support-weighted 
and macro average F1 
scores on the Semtab2019 
dataset; W-SW and W-
MA stand for the 
support-weighted and 
macro average F1 scores 
on the WebTables dataset.



• We propose RECA for column semantic type annotation. RECA extracts and 
leverages inter-table context to enhance the annotation quality of the target column.

• We define a novel named entity schema for RECA to efficiently align related and 
sub-related tables, which resolves the difficulty of incorporating inter-table context.

• We conduct extensive experiments on two real-world web table datasets to show 
that RECA outperforms all the state-of-the-art methods. The result demonstrates the 
effectiveness of utilizing the inter-table context to annotate column semantic types 
accurately.

• We show that RECA is data efficient and learning efficient, since it requires shorter 
input token sequences and fewer training data to achieve high annotation
performance.

Summary
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• Are Large Language Models a Good
Replacement of Taxonomies? (VLDB 2024)

• Taxonomies provide a structured way to 
organize and categorize knowledge, which is 
indeed a kind of ``knowledge about 
knowledge'' (meta-knowledge).

• Typically, nodes in taxonomies follow a tree-
like structure and the relationships between 
nodes are depicted as hypernymy (Is-A) links
(e.g., HKUST is a type of University).

• Recently, we have witnessed the rapid 
advancements of large language models 
(LLMs) such as GPTs and Llamas. These 
LLMs have demonstrated impressive abilities 
in internalizing knowledge

• Can LLMs internalize the taxonomy
structures?

Overview

1/12/2025 48[4] Andreas, “Taxonomy: Tracing Its Greek Roots to Modern Biological Classification - U speak Greek,” U speak Greek, Dec. 25, 2023. https://uspeakgreek.com/science/biology/taxonomy-tracing-its-greek-roots-to-modern-

biological-classification/ (accessed Aug. 18, 2024).

[6] Y. Sun, et al., “Are Large Language Models a Good Replacement of Taxonomies?,” Proceedings of the VLDB Endowment, vol. 17, no. 11, pp. 2919–2932, Aug. 2024, doi:https://doi.org/10.14778/3681954.3681973.

https://doi.org/10.14778/3681954.3681973


• Why this study is important?

• If internalizing taxonomy data in LLMs is feasible, we can save a large amount of labor
work for the construction and maintenance of taxonomies, which is a core asset for data
organization.

• If internalizing taxonomy data in LLMs is feasible, we may witness a change in the data 
management paradigm, with much of the explicitly stored data (such as tree structure in
taxonomies) potentially transformed or partially transformed to exist in an implicit form 
of model internalized knowledge (neural-symbolic form).

Background
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Background
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Data Collection
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• Taxonomies: 10 taxonomies on 8
domains:

• Common taxonomies:

• Shopping domain: eBay, Amazon,
Google

• General domain: Schema.org

• Specialized taxonomies:

• CS domain: ACM-CCS

• Geography domain: GeoNames

• Language domain: Glottolog

• Health domain: ICD-10-CM

• Medical domain: OAE

• Biology domain: NCBI



Question Templates
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• Design of questions: adopt simple True/False question



Question Sets
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• Generation of question set



LLMs
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• LLMs considered:

• Open-source:

• Llama-2s: 7B, 13B, 70B

• Llama-3s: 8B, 70B

• Flan-T5s: 3B, 11B

• Falcons: 7B, 40B

• Vicunas: 7B, 13B, 33B

• Mistrals: 7B, 8*7B

• Closed-source:

• GPTs: GPT 3.5, GPT 4

• Claude-3-Opus

• Fine-tuned:

• LLMs4OL



• We experimented with 18 SOTA LLMs on different taxonomies from common to specialized
domains and root-to-leaf levels to see whether the existing LLMs internalize the taxonomy
knowledge (zero-shot annotation on taxonomy data).

• Specifically, we ask each LLM about whether a child entity is a type of its parent entity.

• Record the QA accuracy for each LLM on each level of different taxonomies.

Experiment Overview
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Experiments
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• RQ1: How reliable are 
LLMs for discovering
hierarchical structures in 
different taxonomies?

• The best LLMs perform well 
on common taxonomies 
(e.g., eBay, with over 90%
accuracy); however, the 
performance downgrades
on specialized taxonomies
to around 60%.



Experiments
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• RQ2: Do LLMs perform 
equally well among
different levels of 
taxonomies?

• LLMs roughly achieve 
progressively worse 
performance from root to 
leaf in most taxonomies 
( e.g., drops by relatively 
over 30% on Language 
taxonomy).



Experiments
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• RQ3: Do normal methods that 
improve LLMs increase the accuracy?

• RD3.1: Can we improve LLMs’
performance by increasing the
sizes of the LLMs used?

• The increase in sizes of LLMs 
may not lead to an increase in 
performance.



Experiments
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• RQ3: Do normal methods that 
improve LLMs increase the accuracy?

• RD3.2: Can we improve LLMs’
performance by adopting
domain-agnostic fine-tuning?

• The adoption of domain-agnostic 
fine-tuning of LLMs may not lead 
to an increase in performance.



Experiments
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• RQ4: Do different prompting settings 
influence the performance?

• The performance changes of best LLMs 
brought by few-shot and Chain-of-
Thoughts prompting settings are minimal.
The main effect of prompting settings is to 
influence the miss rates instead of the 
accuracy of LLMs.

GPT-4 accuracy
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• RQ4: Do different prompting settings 
influence the performance?

• The performance changes of best LLMs 
brought by few-shot and Chain-of-
Thoughts prompting settings are minimal.
The main effect of prompting settings is to 
influence the miss rates instead of the 
accuracy of LLMs.

Llama-2-7B accuracy
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• RQ4: Do different prompting settings 
influence the performance?

• The performance changes of best LLMs 
brought by few-shot and Chain-of-
Thoughts prompting settings are minimal.
The main effect of prompting settings is to 
influence the miss rates instead of the 
accuracy of LLMs.

Llama-2-7B miss rate



• Insights: LLMs are good at common domains and head (root-level) entities.
But less reliable on specialized domains and tail (leaf-level) entities.

• Still cannot be zero-shot, all-rounded, and perfect on domain-specific tasks.

Experiment Summary
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• A concrete example of the integration of traditional taxonomy structure and 
LLMs:
• Replaced the nodes in level 4 or lower of the Amazon Product Category with the Llama-

2-70B model while preserving the nodes in root to level 3.

• We report the precision and recall of the returned product list.

Case Study
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• By performing the LLM replacement on Amazon Product Taxonomy, we
reduce 59% of taxonomy construction and maintenance costs. ☺
• (Number of nodes in each level of Amazon Product Taxonomy: 41-507-3910-13579-25777;

cost saved: 25777/43814 = 59%)

• The precision and recall of the integrated solution are 0.713 and 0.792 
respectively. ☺

• The cost can be further reduced if we replace more levels of taxonomy.

• The precision and recall are expected to be improved along with the
advancements of LLMs.

Case Study
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• In this paper, we introduced TaxoGlimpse, a novel taxonomy hierarchical structure 
benchmark that comprehensively evaluates the data annotation performance of LLMs over 
different taxonomies from common to specialized domains, from root to leaf levels.

• Four highly concerned research questions were proposed and resolved and we provided 
valuable insights into future research.

• Our comprehensive evaluation shows that LLMs present unsatisfactory annotation
performances at specialized taxonomies and for entities near the leaf levels. In response, we 
suggest future research directions to combine the LLMs with traditional taxonomies to create 
novel neural-symbolic taxonomies that have the best of both worlds. 

Summary
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• Properly design fine-tuning mechanisms that help the large-language-model-based/pre-
trained-model-based approaches generalize well on new data lakes (requires research in
training data selection and augmentation).

Research Opportunities: Advanced Designs in
Column Type Annotation Support

1/12/2025 68

Generalizability Accuracy

human-in-the-loop-based low, need training high

pre-trained-model-based medium, require finetuning data high with domain-specific finetuning

large-language-model-based high, only need few-shot examples low, without domain-specific finetuning

large-language-model-based* relatively low, require finetuning data high, with domain-specific finetuning

* means finetuning

Bad Good



• We conduct a preliminary study that evaluates the performance of LLMs
accessing different modalities and sources of data (Our CRAG benchmark
paper, NeurIPS 2024)

• We identify that the existing LLM-based methods fail to provide correct
responses when the annotations are fast-changing or require complex access
to external databases (range query, set query, etc.).

• How to make database content more accessible to LLM and thus help QA
solutions better in the RAG settings remains a challenge and an interesting
topic to explore.

Research Opportunities: RAG and Data Curation
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